Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(44): 41696-41707, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37969969

ABSTRACT

In situ and real-time analysis of chemical systems, or online monitoring, has numerous benefits in all fields of chemistry. A common challenge can be found in matrix effects, where the addition of a new chemical species causes chemical interactions and changes the fingerprints of other chemical species in the system. This is demonstrated here by looking at the Raman and visible spectra of the uranyl ion within combined nitric acid and hydrofluoric acid media. This system is not only highly important to nuclear energy, a green and reliable option for energy portfolios, but also provides a clear chemistry example that can be applied to other chemical systems. The application of optical spectroscopy is discussed, along with the application and comparison of both multivariate curve resolution and HypSpec to deconvolute and understand speciation. Finally, the use of chemical data science in the form of chemometric modeling is used to demonstrate robust quantification of uranium within a complex chemical system where potential matrix effects are not known a priori.

2.
Inorg Chem ; 62(17): 6711-6721, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37058585

ABSTRACT

The mechanism by which high concentrations (1.5 M in n-dodecane) of N,N-di-2-ethylhexyl-isobutyramide (DEHiBA) extracts HNO3 and UO2(NO3)2 is under examination. Most prior studies have examined the extractant and the mechanism at a concentration of 1.0 M in n-dodecane; however, under the higher loading conditions that can be achieved by a higher concentration of extractant, this mechanism could change. Increased extraction of both nitric acid and uranium is observed with an increased concentration of DEHiBA. The mechanisms are examined by thermodynamic modeling of distribution ratios, 15N nuclear magnetic resonance (NMR) spectroscopy, and Fourier transform infrared (FTIR) spectroscopy coupled with principal component analysis (PCA). Speciation diagrams produced through thermodynamic modeling have been qualitatively reproduced through PCA of the FTIR spectra. The predominant extracted species of HNO3(DEHiBA), HNO3(DEHiBA)2, and UO2(NO3)2(DEHiBA)2 are in good agreement with prior literature reports for 1.0 M DEHiBA systems. Evidence for an additional species of either UO2(NO3)2(DEHiBA) or UO2(NO3)2(DEHiBA)2(HNO3) also contributing to the extraction of uranium species is given.

3.
ACS Omega ; 6(12): 8463-8468, 2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33817507

ABSTRACT

The organic soluble extractant bis(2,4,4-trimethylpentyl)dithiophosphinic acid, often called Cyanex 301 (HC301), has shown selectivity for preferentially extracting trivalent actinides over the lanthanides in the treatment of used nuclear fuel. To maintain control and efficiency of a separation process using this extractant, it is necessary to accurately know specific parameters of the system, including the concentration of HC301 in the organic phase, at any given time. Here, the ability to quickly determine the concentration of HC301 in n-dodecane was tested by a one-step permanganometric titration in an organic solution using a double-beam UV-vis spectrophotometer. The addition of HC301 in n-dodecane to solutions of KMnO4 was found to decolorize the KMnO4 solutions, but the HC301 was best quantified in terms of decolorization in acetone. This decolorization allowed for the creation of a linear analytical curve relating the amount of KMnO4 consumed to the amount of HC301 added. Cross-validation of this analytical curve reproduced the known amount of HC301 with an average difference of 1.73% and a maximum of 4.03%.

4.
Inorg Chem ; 60(9): 6125-6134, 2021 May 03.
Article in English | MEDLINE | ID: mdl-33866779

ABSTRACT

The separation of trivalent lanthanides and actinides is challenging because of their similar sizes and charge densities. S-donating extractants have shown significant selectivity for trivalent actinides over lanthanides, with single-stage americium/lanthanide separation efficiencies for some thiol-based extractants reported at >99.999%. While such separations could transform the nuclear waste management landscape, these systems are often limited by the hydrolytic and radiolytic stability of the extractant. Progress away from thiol-based systems is limited by the poorly understood and complex interactions of these extractants in organic phases, where molecular aggregation and micelle formation obfuscates assessment of the metal-extractant coordination environment. Because S-donating thioethers are generally more resistant to hydrolysis and oxidation and the aqueous phase coordination chemistry is anticipated to lack complications brought on by micelle formation, we have considered three thioethers, 2,2'-thiodiacetic acid (TDA), (2R,5S)-tetrahydrothiophene-2,5-dicarboxylic acid, and 2,5-thiophenedicarboxylic acid (TPA), as possible trivalent actinide selective reagents. Formation constants, extended X-ray absorption fine structure spectroscopy, and computational studies were completed for thioether complexes with a variety of trivalent lanthanides and actinides including Nd, Eu, Tb, Am, Cm, Bk, and Cf. TPA was found to have moderately higher selectivity for the actinides because of its ability to bind actinides in a different manner than lanthanides, but the utility of TPA is limited by poor water solubility and high rigidity. While significant competition with water for the metal center limits the efficacy of aqueous-based thioethers for separations, the characterization of these solution-phase, S-containing lanthanide and actinide complexes is the most comprehensively available in the literature to date. This is due to the breadth of lanthanides and actinides considered as well as the techniques deployed and serves as a platform for the further development of S-containing reagents for actinide separations. Additionally, this paper reports on the first bond lengths for Cf and Bk with a neutral S donor.

5.
Chem Commun (Camb) ; 54(75): 10578-10581, 2018 Sep 25.
Article in English | MEDLINE | ID: mdl-30175362

ABSTRACT

Literature casts einsteinium as a departure from earlier transplutonium actinides, with a decrease in stability constants with aminopolycarboxylate ligands. This report studies transplutonium chemistry - including Am, Bk, Cf, and Es - with aminopolycarboxylate ligands. Es complexation follows similar thermodynamic and structural trends established by the earlier actinides, consistent with first-principle calculations.

SELECTION OF CITATIONS
SEARCH DETAIL