Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 946: 174016, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38908595

ABSTRACT

Assessment of occupational exposure to viruses is crucial to identify virus reservoirs and sources of dissemination at an early stage and to help prevent spread between employees and to the general population. Measuring workers' exposure can facilitate assessment of the effectiveness of protective and mitigation measures in place. The aim of this scoping review is to give an overview of available methods and those already implemented for airborne virus' exposure assessment in different occupational and indoor environments. The results retrieved from the different studies may contribute to the setting of future standards and guidelines to ensure a reliable risk characterization in the occupational environments crucial for the implementation of effective control measures. The search aimed at selecting studies between January 1st 2010 and June 30th 2023 in the selected databases. Fifty papers on virus exposure assessment fitted the eligibility criteria and were selected for data extraction. Overall, this study identified gaps in knowledge regarding virus assessment and pinpointed the needs for further research. Several discrepancies were found (transport temperatures, elution steps, …), as well as a lack of publication of important data related to the exposure conditions (contextual information). With the available information, it is impossible to compare results between studies employing different methods, and even if the same methods are used, different conclusions/recommendations based on the expert judgment have been reported due to the lack of consensus in the contextual information retrieved and/or data interpretation. Future research on the field targeting sampling methods and in the laboratory regarding the assays to employ should be developed bearing in mind the different goals of the assessment.


Subject(s)
Air Microbiology , Environmental Monitoring , Occupational Exposure , Environmental Monitoring/methods , Humans , Viruses/isolation & purification
2.
Appl Biosaf ; 28(4): 242-255, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38090353

ABSTRACT

Introduction: Modern germicidal ultraviolet C (UVC) equipment can deliver automated UV disinfection treatment by predetermined or self-monitoring cycle. Limited information exists about the performance of such UV systems for treating SARS-CoV-2 and other viral contaminants on surfaces. Published studies differ in their approaches due to the absence of an approved test method. Methods: The ability of germicidal UVC irradiation systems to disinfect surfaces at room and cabinet scale was assessed. Test carriers, seeded with bacteriophage Phi6, were irradiated following a new standard test method. Powered air-purifying respirator equipment was then used to introduce a more demanding challenge. Results: Treatments of seeded carriers using UVC cabinets gave Phi6 log reductions up to 4.58 logs, with little difference between systems. Subsequent treatments, with carriers located on respirator ensembles, were similar, despite shadowing effects. Differences existed for various combinations of cabinet and carrier location. The Phi6 log reduction range was slightly wider for carousel systems, with the most exposed carrier positions giving the greatest Phi6 reductions for seeded respirators. Discussion: Cabinets demonstrated similar performance despite different technical specifications, with maximum observed Phi6 reduction indicating a measurable level of efficacy. There was a more obvious difference in performance between the two carousels, where one delivered an almost twofold higher UVC dose than the other, the most likely explanation for observed performance differences. Conclusion: UVC cabinets and carousels demonstrated Phi6 reductions that could augment routine cleaning measures for reusable respirators. In real-world scenarios, germicidal UVC devices could therefore potentially offer benefits for reducing contact transmission from infectious viruses.

3.
Appl Biosaf ; 28(1): 1-10, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36895580

ABSTRACT

Introduction: The widespread transmission of the SARS-CoV-2 virus has increased scientific and societal interest in air cleaning technologies, and their potential to mitigate the airborne spread of microorganisms. Here we evaluate room scale use of five mobile air cleaning devices. Methods: A selection of air cleaners, containing high efficiency filtration, was tested using an airborne bacteriophage challenge. Assessments of bioaerosol removal efficacy were undertaken using a decay measurement approach over 3 h, with air cleaner performance compared with bioaerosol decay rate without an air cleaner in the sealed test room. Evidence of chemical by-product emission was also checked, as were total particle counts. Results: Bioaerosol reduction, exceeding natural decay, was observed for all air cleaners. Reductions ranged between devices from <2-log per m3 room air for the least effective, to a >5-log reduction for the most efficacious systems. One system generated detectable ozone within the sealed test room, but ozone was undetectable when the system was run in a normally ventilated room. Total particulate air removal trends aligned with measured airborne bacteriophage decline. Discussion: Air cleaner performance differed, and this could relate to individual air cleaner flow specifications as well as test room conditions, such as air mixing during testing. However, measurable reductions in bioaerosols, beyond natural airborne decay rate, were observed. Conclusion: Under the described test conditions, air cleaners containing high efficiency filtration significantly reduced bioaerosol levels. The best performing air cleaners could be investigated further with improved assay sensitivity, to enable measurement of lower residual levels of bioaerosols.

4.
Microorganisms ; 9(12)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34946176

ABSTRACT

When transferring highly infective patients to specialist hospitals, safe systems of work minimise the risk to healthcare staff. The EpiShuttle is a patient transport system that was developed to fit into an air ambulance. A validated decontamination procedure is required before the system can be adopted in the UK. Hydrogen peroxide (H2O2) vapour fumigation may offer better penetration of the inaccessible parts than the liquid disinfectant wiping that is currently suggested. To validate this, an EpiShuttle was fumigated in a sealed test chamber. Commercial bacterial spore indicators (BIs), alongside organic liquid suspensions and dried surface samples of MS2 bacteriophage (a safe virus surrogate), were placed in and around the EpiShuttle, for the purpose of evaluation. The complete kill of all of the BIs in the five test runs demonstrated the efficacy of the fumigation cycle. The log reduction of the MS2 that was dried on the coupons ranged from 2.66 to 4.50, but the log reduction of the MS2 that was in the organic liquids only ranged from 0.07 to 1.90, confirming the results of previous work. Fumigation with H2O2 alone may offer insufficient inactivation of viruses in liquid droplets, therefore a combination of fumigation and disinfectant surface wiping was proposed. Initial fumigation reducing contamination with minimal intervention allows disinfectant wipe cleaning to be completed more safely, with a second fumigation step inactivating the residual pathogens.

5.
Sci Total Environ ; 791: 148287, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34139489

ABSTRACT

In many countries, the management of household waste has recently changed with an increased focus upon waste sorting resulting in lower collection frequency for some waste fractions. A consequence of this is the potential for increased growth of microorganisms in the waste before collection, which can lead to an increased exposure via inhalation for waste collection workers. Through a review of the literature, we aimed to evaluate risks caused by waste collecting workers' exposure to bioaerosols and to illuminate potential measures to reduce the exposure. Across countries and waste types, median exposure to fungi, bacteria, and endotoxin were typically around 104 colony forming units (cfu)/m3, 104 cfu/m3, and 10 EU/m3, respectively. However, some studies found 10-20+ times higher or lower median exposure levels. It was not clear how different types of waste influence the occupational exposure levels. Factors such as high loading, ventilation in and cleaning of drivers' cabs, increased collection frequency, waste in sealed sacks, and use of hand sanitizer reduce exposure. Incidences of gastrointestinal problems, irritation of the eye and skin and symptoms of organic dust toxic syndrome have been reported in workers engaged in waste collection. Several studies reported a correlation between bioaerosol exposure level and reduced lung function as either a short or a long term effect; exposure to fungi and endotoxin is often associated with an inflammatory response in exposed workers. However, a better understanding of the effect of specific microbial species on health outcomes is needed to proceed to more reliable risk assessments. Due to the increasing recycling effort and to the effects of global warming, exposure to biological agents in this working sector is expected to increase. Therefore, it is important to look ahead and plan future measures as well as improve methods to prevent long and short-term health effects.


Subject(s)
Air Pollutants, Occupational , Occupational Exposure , Air Microbiology , Air Pollutants, Occupational/analysis , Bacteria , Dust/analysis , Endotoxins/analysis , Fungi , Humans , Occupational Exposure/analysis
6.
Appl Biosaf ; 25(1): 28-40, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-36033381

ABSTRACT

Introduction: The performance of 2 disinfectant chemicals, peracetic acid (PAA) and hypochlorous acid (HOCl), was evaluated using a Venturi-nozzle-based light decontamination system (LDS) for delivery. The atomization equipment combined low-pressure air and disinfectant via a handheld lance, producing a fine, dense aerosol. A range of microorganisms, including Bacillus cereus and Bacillus anthracis (Vollum) spores, were used as test challenges to evaluate chemicals and equipment. Methods: The tests undertaken included assessments over fixed and variable exposure times, use of multiple surface materials, and a live agent challenge. Results: Over a fixed-time exposure of 60 minutes, aerosolized PAA gave 7- to 8-log reductions of all test challenges, but HOCl was less effective. Material tests showed extensive kill on most surfaces using PAA (≥6-log kill), but HOCl showed more variation (4- to 6-log). Testing using B. anthracis showed measurable PAA induced spore kill inside 5 minutes and >6-log kill at 5 minutes or over. HOCl was less effective. Discussion: The results demonstrate the importance of testing decontamination systems against a range of relevant microbiological challenges. Disinfectant efficacy may vary depending on product choice, types of challenge microorganisms, and their position in a treated area. The most effective disinfectants demonstrate biocidal efficacy despite these factors. Conclusion: The data confirmed PAA as an effective disinfectant capable of rapidly killing a range of microorganisms, including spores. HOCl was less effective. The LDS system successfully delivered PAA and HOCl over a wide area and could be suitable for a range of frontline biosecurity applications.

7.
Int J Biometeorol ; 49(3): 167-78, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15290434

ABSTRACT

Total (as opposed to culturable) bacterial number counts are reported for four sites in the United Kingdom measured during campaigns over four separate seasons. These are interpreted in relation to simple climatic factors, i.e. temperature, wind speed and wind direction. Temperature has a marked effect at all four sites with data for a rural coastal site conforming best to a simple exponential model. Data for the other rural and urban locations show a baseline similar to that determined at the coastal rural location, but with some very significant positive excursions. The temperature dependence of bacterial number is found to conform to that typical of bacterial growth rates. At the coastal rural location, bacterial numbers normalised for temperature show no dependence on wind speed whilst at the inland sites there is a decrease with increasing wind speed of the form expected for a large area source. Only one site appeared to show a systematic relationship of bacterial concentrations to wind direction that being a site in the suburbs of Birmingham with highest number concentrations observed on a wind sector approaching from the city centre. PCR techniques have been used to identify predominant types of bacteria and results are presented which show that Bacillus was the dominant genus observed at the three inland sites during the winter and summer seasons. Pseudomonas appeared with comparable frequency at certain sites and seasons. There was in general a greater diversity of bacteria at the coastal site than at the inland sites.


Subject(s)
Air Microbiology , Climate , Base Sequence , Colony Count, Microbial , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , England , Meteorological Concepts , Wind
8.
Br J Perioper Nurs ; 14(10): 452, 454-6, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15515261

ABSTRACT

Laser and electrocautery devices used during surgery produce smoky emissions that may contain vapours and particulate aerosols, which can have a chemical and biological impact on those exposed. A group of theatre staff and specialist nurses at Rotherham District General Hospital got together to draw up a risk assessment into the possible occupational exposure of theatre staff, with a view to eliminating or controlling these hazards as far as possible.


Subject(s)
Air Pollutants, Occupational/analysis , Diathermy , Environmental Monitoring/methods , Occupational Exposure/analysis , Operating Rooms , Risk Assessment/methods , Benchmarking , Data Collection/methods , England , Guidelines as Topic , Hospitals, District , Hospitals, General , Humans , Inhalation Exposure/analysis , Occupational Health , Smoke/analysis
9.
Br J Perioper Nurs ; 14(9): 409-14, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15508400

ABSTRACT

Laser and electrocautery devices used during surgery produce smoky emissions that may contain vapours and particulate aerosols, which can have a chemical and biological impact on those exposed. A group of theatre staff and specialist nurses at Rotherham District General Hospital got together to draw up a risk assessment into the possible occupational exposure of theatre staff, with a view to eliminating or controlling these hazards as far as possible.


Subject(s)
Electrocoagulation/instrumentation , Laser Therapy/instrumentation , Smoke/adverse effects , Ventilation/methods , Air Pollutants, Occupational , Electrocoagulation/adverse effects , General Surgery , Humans , Laser Therapy/adverse effects , Occupational Exposure/prevention & control , Operating Room Nursing , Operating Rooms/standards , Protective Devices/standards , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL