Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Scand J Immunol ; 100(3): e13391, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38773691

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are innate-like T cells that can be activated by microbial antigens and cytokines and are abundant in mucosal tissues including the colon. MAIT cells have cytotoxic and pro-inflammatory functions and have potentials for use as adoptive cell therapy. However, studies into their anti-cancer activity, including their role in colon cancer, are limited. Using an animal model of colon cancer, we showed that peritumoral injection of in vivo-expanded MAIT cells into RAG1-/- mice with MC38-derived tumours inhibits tumour growth compared to control. Multiplex cytokine analyses showed that tumours from the MAIT cell-treated group have higher expression of markers for eosinophil-activating cytokines, suggesting a potential association between eosinophil recruitment and tumour inhibition. In a human peripheral leukocyte co-culture model, we showed that leukocytes stimulated with MAIT ligand showed an increase in eotaxin-1 production and activation of eosinophils, associated with increased cancer cell killing. In conclusion, we showed that MAIT cells have a protective role in a murine colon cancer model, associated with modulation of the immune response to cancer, potentially involving eosinophil-associated mechanisms. Our results highlight the potential of MAIT cells for non-donor restricted colon cancer immunotherapy.


Subject(s)
Colonic Neoplasms , Eosinophils , Immunity, Innate , Mice, Knockout , Mucosal-Associated Invariant T Cells , Animals , Mucosal-Associated Invariant T Cells/immunology , Colonic Neoplasms/immunology , Colonic Neoplasms/therapy , Mice , Humans , Immunity, Innate/immunology , Eosinophils/immunology , Cytokines/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Cell Line, Tumor , Coculture Techniques , Homeodomain Proteins
2.
Biomedicines ; 12(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38397942

ABSTRACT

RNA binding proteins (RBPs) post-transcriptionally regulate gene expression by associating with regulatory sequences in the untranslated regions of mRNAs. Cold-inducible RBP (CIRP) is a stress-induced RBP that was recently shown to modulate inflammation in response to cellular stress, where it increases or decreases pro-tumorigenic (proinflammatory) cytokines in different contexts. CIRP expression is altered in several cancers, including breast cancer, but the effects of CIRP on inflammation in breast cancer is not known. Here, we investigate if CIRP alters growth and the inflammatory profile of breast tumors. Transgenic mice overexpressing CIRP in the mammary epithelium were crossed with the PyMT mouse model of breast cancer, and the effects on both early and late tumorigenesis and inflammation were assessed. The effects of CIRP knockdown were also assessed in Py2T cell grafts. Overexpression of CIRP led to decreased tumorigenesis in the PyMT mouse model. Conversely, the knockdown of CIRP in Py2T cell grafts led to increased tumor growth. Luminex cytokine assays assessed the effects on the inflammatory environment. CIRP/PyMT mammary glands/mammary tumors and serum had decreased cytokines that promote inflammation, angiogenesis, and metastasis compared to PyMT mammary glands and serum, documenting a shift towards an environment less supportive of tumorigenesis. CIRP overexpression also decreased CD4+ helper T cells and increased CD8+ cytotoxic T cells in mammary tumors. Overall, these data support a role for CIRP as a potent antitumor molecule that suppresses both local and systemic pro-tumorigenic inflammation.

3.
bioRxiv ; 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38293128

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are innate-like T cells that can be activated by microbial antigens and cytokines and are abundant in mucosal tissues including the colon. MAIT cells have cytotoxic and pro-inflammatory functions and have potentials for use as adoptive cell therapy. However, studies into their anti-cancer activity, including their role in colon cancer, are limited. Using an animal model of colon cancer, we show that peritumoral injection of in vivo-expanded MAIT cells into RAG1-/- mice with MC38-derived tumors inhibits tumor growth compared to control. Multiplex cytokine analyses show that tumors from the MAIT cell-treated group have higher expression of markers for eosinophil-activating cytokines, suggesting an association between eosinophil recruitment and tumor inhibition. In a human peripheral leukocyte co-culture model, we show that leukocytes stimulated with MAIT ligand show an increase in eotaxin-1 production and activation of eosinophils, associated with increased cancer cell killing. In conclusion, we show that MAIT cells have a protective role in a murine colon cancer model, associated with modulation of the immune response to cancer, potentially involving eosinophil-associated mechanisms. Our results highlight the potential of MAIT cells for non-donor restricted colon cancer immunotherapy.

4.
J Crohns Colitis ; 18(7): 1147-1161, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38224550

ABSTRACT

BACKGROUND: Mesenchymal stromal cells are suggested to play a critical role in Crohn's disease [CD]-associated fibrosis. MAPKAPK2 [MK2] has emerged as a potential therapeutic target to reduce inflammation in CD. However, the cell-specific pattern of phospho-MK2 activation and its role in CD-associated fibrosis are unknown. The objectives of this study were to evaluate cell-specific changes in MK2 activity between predominantly inflammatory CD vs CD with fibrotic complications and define the role of stromal cell-specific MK2 activation in CD-associated fibrosis. METHODS: CD tissue, CD tissue-derived mesenchymal stromal cells known as myo-/fibroblasts [CD-MFs], and fibroblast-specific MK2 conditional knockout [KO] mice were used. RESULTS: In the inflamed area of predominantly inflammatory CD, high MK2 activity was equally distributed between mesenchymal and haematopoietic cells. By contrast, in CD with fibrotic complications, high MK2 activity was mostly associated with mesenchymal stromal cells. Using ex vivo CD tissue explants and an IL-10KO murine colitis model, we demonstrated that pro-fibrotic responses are significantly reduced by treatment with the MK2 inhibitor PF-3644022. Inhibition of MK2 activity in primary cultures of CD-MFs significantly reduced basal and TGF-ß1-induced profibrotic responses. Using fibroblast-specific MK2 knockout mice in chronic dextran saline sulphate colitis, we demonstrated that fibroblast intrinsic MK2 signalling is among the key processes involved in the chronic inflammation-induced profibrotic responses. CONCLUSIONS: Our data suggest that activation of MK2 within fibroblasts contributes to the chronic inflammation-induced fibrosis in CD and that targeting MK2 has potential for the development of novel therapeutic approaches for fibrosis in CD.


Subject(s)
Crohn Disease , Fibroblasts , Fibrosis , Intracellular Signaling Peptides and Proteins , Mesenchymal Stem Cells , Mice, Knockout , Protein Serine-Threonine Kinases , Animals , Crohn Disease/pathology , Mesenchymal Stem Cells/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Mice , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Fibroblasts/metabolism , Humans , Disease Models, Animal , Colitis/pathology , Interleukin-10/metabolism , Male , Female
SELECTION OF CITATIONS
SEARCH DETAIL