Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ISME Commun ; 2(1): 8, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-37938277

ABSTRACT

The atmosphere contains a diverse reservoir of microbes but the sources and factors contributing to microbial aerosol variability are not well constrained. To advance understanding of microbial emissions in wildfire smoke, we used unmanned aircraft systems to analyze the aerosols above high-intensity forest fires in the western United States. Our results show that samples of the smoke contained ~four-fold higher concentrations of cells (1.02 ± 0.26 × 105 m-3) compared to background air, with 78% of microbes in smoke inferred to be viable. Fivefold higher taxon richness and ~threefold enrichment of ice nucleating particle concentrations in smoke implies that wildfires are an important source of diverse bacteria and fungi as well as meteorologically relevant aerosols. We estimate that such fires emit 3.71 × 1014 microbial cells ha-1 under typical wildfire conditions in western US forests and demonstrate that wildland biomass combustion has a large-scale influence on the local atmospheric microbial assemblages. Given the long-range transport of wildfire smoke emissions, these results expand the concept of a wildfire's perimeter of biological impact and have implications to biogeography, gene flow, the dispersal of plant, animal, and human pathogens, and meteorology.

2.
Sci Rep ; 7(1): 11244, 2017 09 11.
Article in English | MEDLINE | ID: mdl-28894128

ABSTRACT

Changes in resident microbiota may have wide-ranging effects on human health. We investigated whether early life microbial disruption alters neurodevelopment and behavior in larval zebrafish. Conventionally colonized, axenic, and axenic larvae colonized at 1 day post fertilization (dpf) were evaluated using a standard locomotor assay. At 10 dpf, axenic zebrafish exhibited hyperactivity compared to conventionalized and conventionally colonized controls. Impairment of host colonization using antibiotics also caused hyperactivity in conventionally colonized larvae. To determine whether there is a developmental requirement for microbial colonization, axenic embryos were serially colonized on 1, 3, 6, or 9 dpf and evaluated on 10 dpf. Normal activity levels were observed in axenic larvae colonized on 1-6 dpf, but not on 9 dpf. Colonization of axenic embryos at 1 dpf with individual bacterial species Aeromonas veronii or Vibrio cholerae was sufficient to block locomotor hyperactivity at 10 dpf. Exposure to heat-killed bacteria or microbe-associated molecular patterns pam3CSK4 or Poly(I:C) was not sufficient to block hyperactivity in axenic larvae. These data show that microbial colonization during early life is required for normal neurobehavioral development and support the concept that antibiotics and other environmental chemicals may exert neurobehavioral effects via disruption of host-associated microbial communities.


Subject(s)
Gastrointestinal Microbiome , Nervous System/growth & development , Zebrafish/growth & development , Zebrafish/microbiology , Aeromonas veronii/growth & development , Animals , Anti-Bacterial Agents/administration & dosage , Behavior, Animal , Embryo, Nonmammalian , Larva/growth & development , Larva/microbiology , Locomotion , Vibrio cholerae/growth & development
3.
Genome Announc ; 3(5)2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26430036

ABSTRACT

The Stachybotrys chartarum strain 51-11 genome was sequenced by shotgun sequencing utilizing Illumina HiSeq 2000 and PacBio technologies. Since S. chartarum has been implicated as having health impacts within water-damaged buildings, any information extracted from the genomic sequence data relating to toxins or the metabolism of the fungus might be useful.

4.
BMC Microbiol ; 13: 283, 2013 Dec 05.
Article in English | MEDLINE | ID: mdl-24308451

ABSTRACT

BACKGROUND: Stachybotrys chartarum is a filamentous mold frequently identified among the mycobiota of water-damaged building materials. Growth of S. chartarum on suitable substrates and under favorable environmental conditions leads to the production of secondary metabolites such as mycotoxins and microbial volatile organic compounds (MVOCs). The aim of this study was to characterize MVOC emission profiles of seven toxigenic strains of S. chartarum, isolated from water-damaged buildings, in order to identify unique MVOCs generated during growth on gypsum wallboard and ceiling tile coupons. Inoculated coupons were incubated and monitored for emissions and growth using a closed glass environmental growth chamber maintained at a constant room temperature. Gas samples were collected from the headspace for three to four weeks using Tenax TA tubes. RESULTS: Most of the MVOCs identified were alcohols, ketones, ethers and esters. The data showed that anisole (methoxybenzene) was emitted from all of the S. chartarum strains tested on both types of substrates. Maximum anisole concentration was detected after seven days of incubation. CONCLUSIONS: MVOCs are suitable markers for fungal identification because they easily diffuse through weak barriers like wallpaper, and could be used for early detection of mold growth in hidden cavities. This study identifies the production of anisole by seven toxigenic strains of Stachybotrys chartarum within a period of one week of growth on gypsum wallboard and ceiling tiles. These data could provide useful information for the future construction of a robust MVOC library for the early detection of this mold.


Subject(s)
Calcium Sulfate , Environmental Microbiology , Stachybotrys/growth & development , Stachybotrys/metabolism , Volatile Organic Compounds/metabolism
5.
Environ Sci Technol ; 42(15): 5712-7, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18754498

ABSTRACT

Bacillus anthracis (B. anthracis) spores were released through the U.S. mail system in 2001, highlighting the need to develop efficacious methods of decontaminating and disposing of materials contaminated with biological agents. Incineration of building decontamination residue is a disposal option for such material, although the complete inactivation of bacterial spores via this technique is not a certainty. Tests revealed that under some circumstances, Geobacillus stearothermophilus (G. stearothermophilus; a surrogate for B. anthracis) spores embedded in building materials remained active after 35 min in a pilot-scale incinerator and survived with internal material bundle temperatures reaching over 500 degrees C. A model was also developed to predict survival of a bacterial spore population undergoing thermal treatment in an incinerator using the thermal destruction kinetic parameters obtained in a laboratory setting. The results of the pilot-scale incinerator experiments are compared to model predictions to assess the accuracy of the model.


Subject(s)
Bacillus anthracis/isolation & purification , Construction Materials/microbiology , Decontamination/methods , Incineration/methods , Spores, Bacterial/isolation & purification , Bacillus anthracis/growth & development , Kinetics , Models, Biological , Pilot Projects , Spores, Bacterial/growth & development
6.
Appl Environ Microbiol ; 74(11): 3471-80, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18378646

ABSTRACT

Molybdenum-independent nitrogenases were first described in the nitrogen-fixing bacterium Azotobacter vinelandii and have since been described in other diazotrophic bacteria. Previously, we reported the isolation of seven diazotrophs with Mo-independent nitrogenases from aquatic environments. In the present study, we extend these results to include diazotrophs isolated from wood chip mulch, soil, "paraffin dirt," and sediments from mangrove swamps. Mo-deficient, N-free media under both aerobic and anaerobic conditions were used for the isolations. A total of 26 isolates were genetically and physiologically characterized. Their phylogenetic placement was determined using 16S rRNA gene sequence analysis. Most of the isolates are members of the gamma subdivision of the class Proteobacteria and appear to be specifically related to fluorescent pseudomonads and azotobacteria. Two other isolates, AN1 and LPF4, are closely related to Enterobacter spp. and Paenibacillus spp., respectively. PCR and/or Southern hybridization were used to detect the presence of nitrogenase genes in the isolates. PCR amplification of vnfG and anfG was used to detect the genetic potential for the expression of the vanadium-containing nitrogenase and the iron-only nitrogenase in the isolates. This study demonstrates that diazotrophs with Mo-independent nitrogenases can be readily isolated from diverse natural environments.


Subject(s)
Bacteria/enzymology , Bacteria/isolation & purification , Environmental Microbiology , Molybdenum/pharmacology , Nitrogenase/metabolism , Aerobiosis , Anaerobiosis , Bacteria/classification , Bacteria/genetics , Bacterial Proteins/genetics , Blotting, Southern , Coenzymes/pharmacology , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Gram-Positive Bacteria/classification , Gram-Positive Bacteria/enzymology , Gram-Positive Bacteria/genetics , Gram-Positive Bacteria/isolation & purification , Molecular Sequence Data , Nitrogenase/genetics , Phylogeny , Polymerase Chain Reaction , Proteobacteria/classification , Proteobacteria/enzymology , Proteobacteria/genetics , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sequence Homology
7.
Environ Sci Pollut Res Int ; 14(7): 523-8, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18062486

ABSTRACT

GOAL, SCOPE AND BACKGROUND: Reducing occupant exposure to indoor mold is the goal of this research, through the efficacy testing of antimicrobial cleaners. Often mold contaminated building materials are not properly removed, but instead surface cleaners are applied in an attempt to alleviate the problem. The efficacy of antimicrobial cleaners to remove, eliminate or control mold growth on surfaces can easily be tested on non-porous surfaces. However, the testing of antimicrobial cleaner efficacy on porous surfaces, such as those found in the indoor environment such as gypsum board can be more complicated and prone to incorrect conclusions regarding residual organisms. The mold Stachybotrys chartarum has been found to be associated with idiopathic pulmonary hemorrhage in infants and has been studied for toxin production and its occurrence in water damaged buildings. Growth of S. chartarum on building materials such as gypsum wallboard has been frequently documented. METHODS: Research to control S. chartarum growth using 13 separate antimicrobial cleaners on contaminated gypsum wallboard has been performed in laboratory testing. Popular brands of cleaning products were tested by following directions printed on the product packaging. RESULTS: A variety of gypsum wallboard surfaces were used to test these cleaning products at high relative humidity. The results indicate differences in antimicrobial efficacy for the six month period of testing. DISCUSSION: Results for the six types of GWB surfaces varied extensively. However, three cleaning products exhibited significantly better results than others. Lysol All-Purpose Cleaner-Orange Breeze (full strength) demonstrated results which ranked among the best in five of the six surfaces tested. Both Borax and Orange Glo Multipurpose Degreaser demonstrated results which ranked among the best in four of the six surfaces tested. CONCLUSIONS: The best antimicrobial cleaner to choose is often dependent on the type of surface to be cleaned of S. chartarum contamination. For Plain GWB, no paint, the best cleaners were Borax, Lysol All-Purpose Cleaner-Orange Breeze (full strength), Orange Glo Multipurpose Degreaser, and Fantastik Orange Action. RECOMMENDATIONS AND PERSPECTIVES: These results are not meant to endorse the incomplete removal of mold contaminated building materials. However, it is recognized that complete removal may not always be possible and solutions to control mold regrowth may contribute to reduced occupant exposure. Current recommendations of removal and replacement of porous building materials should be followed. It is not the intension of this discussion to endorse any product. Reporting on the performance of these products under the stated conditions was and remains the only purpose.


Subject(s)
Air Pollution, Indoor/prevention & control , Antifungal Agents/pharmacology , Calcium Sulfate , Detergents/pharmacology , Stachybotrys/drug effects , Surface Properties
8.
Mycopathologia ; 162(4): 265-71, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17039272

ABSTRACT

Due to the accumulating evidence that suggests that numerous unhealthy conditions in the indoor environment are the result of abnormal growth of the filamentous fungi (mold) in and on building surfaces it is necessary to accurately determine the organisms responsible for these maladies and to identify them in an accurate and timely manner. Historically, identification of filamentous fungal (mold) species has been based on morphological characteristics, both macroscopic and microscopic. These methods may often be time consuming and inaccurate, necessitating the development of identification protocols that are rapid, sensitive, and precise. To this end, we have devised a simple PAN-PCR approach which when coupled to cloning and sequencing of the clones allows for the unambiguous identification of multiple fungal organisms. Universal primers are used to amplify ribosomal DNA sequences which are then cloned and transformed into Escherichia coli. Individual clones are then sequenced and individual sequences analyzed and organisms identified. Using this method we were capable of identifying Stachybotrys chartarum, Penicillium purpurogenum, Aspergillus sydowii, and Cladosporium cladosporioides from a mixed culture. This method was found to be rapid, highly specific, easy to perform, and cost effective.


Subject(s)
Fungi/genetics , Polymerase Chain Reaction/methods , Sequence Analysis, DNA/methods , Aspergillus/genetics , Aspergillus/isolation & purification , Cladosporium/genetics , Cladosporium/isolation & purification , Fungi/classification , Fungi/isolation & purification , Penicillium/genetics , Penicillium/isolation & purification , Stachybotrys/genetics , Stachybotrys/isolation & purification
9.
Mol Biotechnol ; 31(1): 21-8, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16118412

ABSTRACT

Because of the accumulating evidence that suggests that numerous unhealthy conditions in the indoor environment are the result of abnormal growth of the filamentous fungi (mold) in and on building surfaces, it is necessary to accurately reflect the organisms responsible for these maladies and to identify them in precise and timely manner. To this end, we have developed a method that is cost effective, easy to perform, and accurate. We performed a simple polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) analysis on multiple members of species known to negatively influence the indoor environment. The genera analyzed were Stachybotrys, Penicillium, Aspergillus, and Cladosporium. Each organism underwent PCR with universal primers that amplified ribosomal sequences generating products from 550 to 600 bp followed by enzymatic digestion with EcoRI, HaeIII, MspI, and HinfI. Our results show that using this combination of restriction enzymes enables the identification of these fungal organisms at the species level.


Subject(s)
Fungi/genetics , Polymerase Chain Reaction/methods , Polymorphism, Restriction Fragment Length , Spores, Fungal/genetics , Aspergillus/genetics , Cladosporium/genetics , DNA Restriction Enzymes , Fungi/classification , Fungi/isolation & purification , Penicillium/genetics , Sequence Analysis, DNA , Sick Building Syndrome , Spores, Fungal/isolation & purification , Stachybotrys/genetics
10.
J Microbiol Methods ; 61(1): 9-16, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15676191

ABSTRACT

Historically, identification of filamentous fungal (mold) species has been based on morphological characteristics, both macroscopic and microscopic. These methods may often be time-consuming and inaccurate, necessitating the development of identification protocols that are rapid, sensitive, and precise. The polymerase chain reaction (PCR) has shown great promise in its ability to identify and quantify individual organisms from a mixed culture environment; however, the cost effectiveness of single organism PCR reactions is quickly becoming an issue. Our laboratory has developed a simple method to identify multiple fungal species, Stachybotrys chartarum, Aspergillus versicolor, Penicillium purpurogenum, and Cladosporium spp. by performing multiplex PCR and distinguishing the different reaction products by their mobility during agarose gel electrophoresis. The amplified genes include the beta-Tubulin gene from A. versicolor, the Tri5 gene from S. chartarum, and ribosomal sequences from both P. purpurogenum and Cladosporium spp. This method was found to be both rapid and easy to perform, while maintaining high sensitivity and specificity for characterizing isolates, even from a mixed culture.


Subject(s)
Aspergillus/isolation & purification , Cladosporium/isolation & purification , Penicillium/isolation & purification , Polymerase Chain Reaction/methods , Stachybotrys/isolation & purification , Air Pollution, Indoor , Aspergillus/genetics , Cladosporium/genetics , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Penicillium/genetics , Sequence Analysis, DNA , Sick Building Syndrome/microbiology , Spores, Fungal/chemistry , Stachybotrys/genetics , Tubulin/chemistry , Tubulin/genetics
11.
J Microbiol Methods ; 56(3): 431-4, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14967235

ABSTRACT

Following air sampling fungal DNA needs to be extracted and purified to a state suitable for laboratory use. Our laboratory has developed a simple method of extraction and purification of fungal DNA appropriate for enzymatic manipulation and Polymerase Chain Reaction (PCR) applications. The methodology described is both rapid and cost effective for use with multiple fungal organisms.


Subject(s)
Air Microbiology , DNA, Fungal/isolation & purification , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Nucleic Acid Synthesis Inhibitors , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...