Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 18(4): e0010932, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38683840

ABSTRACT

BACKGROUND: Dengue (DENV) transmission is endemic throughout coastal Ecuador, showing heterogeneous incidence patterns in association with fine-scale variation in Aedes aegypti vector populations and other factors. Here, we investigated the impact of micro-climate and neighbourhood-level variation in urbanization on Aedes abundance, resting behaviour and associations with dengue incidence in two endemic areas. METHODOLOGY/PRINCIPAL FINDINGS: Aedes aegypti were collected in Quinindé and Portoviejo, two urban cantons with hyperendemic dengue transmission in coastal Ecuador. Aedes vectors were sampled in and around houses within urban and peri-urban neighbourhoods at four time periods. We tested for variation in vector abundance and resting behaviour in relation to neighbourhood urbanization level and microclimatic factors. Aedes abundance increased towards the end of the rainy season, was significantly higher in Portoviejo than in Quinindé, and in urban than in peri-urban neighbourhoods. Aedes vectors were more likely to rest inside houses in Portoviejo but had similar abundance in indoor and outdoor resting collections in Quinindé. Over the study period, DENV incidence was lower in Quinindé than in Portoviejo. Relationships between weekly Ae. aegypti abundance and DENV incidence were highly variable between trapping methods; with positive associations being detected only between BG-sentinel and outdoor Prokopack collections. CONCLUSIONS/SIGNIFICANCE: Aedes aegypti abundance was significantly higher in urban than peri-urban neighbourhoods, and their resting behaviour varied between study sites. This fine-scale spatial heterogeneity in Ae. aegypti abundance and behaviour could generate site-specific variation in human exposure and the effectiveness of indoor-based interventions. The trap-dependent nature of associations between Aedes abundance and local DENV incidence indicates further work is needed to identify robust entomological indicators of infection risk.


Subject(s)
Aedes , Dengue , Mosquito Vectors , Animals , Aedes/virology , Aedes/physiology , Ecuador/epidemiology , Dengue/transmission , Dengue/epidemiology , Incidence , Mosquito Vectors/physiology , Mosquito Vectors/virology , Humans , Female , Seasons
2.
Heliyon ; 6(11): e05388, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33241138

ABSTRACT

Plant based biochars are proposed as soil amendments to immobilize potentially toxic trace elements (PTEs), such as Cd(II), Pb(II) and Zn(II) and aid in soil restoration. However, the sorption capacity of biochar for these elements can vary widely depending on biochar nature and metal properties. Currently, there is no clear methodology to pre-screen biochars for their suitability as adsorbents for these elements. Therefore, to facilitate biochar selection for application in soil restoration, this study explored the relationships between the physico-chemical properties of five plant-based biochars and their capacity to immobilize Cd(II), Pb(II) and Zn(II). Batch experiments using synthetic soil pore water were used to assess the sorption of these elements. The sorption isotherms described by the Hill model indicated that PTE sorption capacity followed the order Pb(II) > Cd(II) >Zn(II) regardless of biochar type in mono-element systems. Preferential sorption of Pb(II) limited the immobilization of Cd(II) and Zn(II) in multi-element systems. ATR-FTIR and SEM-EDX spectroscopy studies indicated that Cd(II) and Pb(II) sorption was mediated by complexation with carboxylic groups, cation-π interactions and precipitation with phosphates and silicates, while Zn(II) sorption occurred mainly by complexation with phenolic groups and precipitation with phosphates. A high correlation (>0.8) between Electrical Conductivity, Cation Exchange Capacity, pH and sorption capacity was identified for all metals tested, highlighting the electrostatic nature of the sorption mechanisms involved. Biochars derived from herbaceous feedstock were better candidates for remediation of soil polluted with Cd(II), Pb(II) and Zn(II), rather than wood-derived biochar. Overall, this study provides evidence of the direct relationship between specific properties of plant-based biochars (pH and EC) and their suitability as adsorbents for some PTEs in soil systems.

3.
Parasit Vectors ; 13(1): 31, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31941536

ABSTRACT

BACKGROUND: Entomological monitoring of Aedes vectors has largely relied on surveillance of larvae, pupae and non-host-seeking adults, which have been poorly correlated with human disease incidence. Exposure to mosquito-borne diseases can be more directly estimated using human landing catches (HLC), although this method is not recommended for Aedes-borne arboviruses. We evaluated a new method previously tested with malaria vectors, the mosquito electrocuting trap (MET) as an exposure-free alternative for measuring landing rates of Aedes mosquitoes on people. Aims were to (i) compare the MET to the BG-sentinel (BGS) trap gold standard approach for sampling host-seeking Aedes vectors; and (ii) characterize the diel activity of Aedes vectors and their association with microclimatic conditions. METHODS: The study was conducted over 12 days in Quinindé (Ecuador) in May 2017. Mosquito sampling stations were set up in the peridomestic area of four houses. On each day of sampling, each house was allocated either a MET or a BGS trap, which were rotated amongst the four houses daily in a Latin square design. Mosquito abundance and microclimatic conditions were recorded hourly at each sampling station between 7:00-19:00 h to assess variation between vector abundance, trapping methods, and environmental conditions. All Aedes aegypti females were tested for the presence of Zika (ZIKV), dengue (DENV) and chikungunya (CHIKV) viruses. RESULTS: A higher number of Ae. aegypti females were found in MET than in BGS collections, although no statistically significant differences in mean Ae. aegypti abundance between trapping methods were found. Both trapping methods indicated female Ae. aegypti had bimodal patterns of host-seeking, being highest during early morning and late afternoon hours. Mean Ae. aegypti daily abundance was negatively associated with daily temperature. No infection by ZIKV, DENV or CHIKV was detected in any Aedes mosquitoes caught by either trapping method. CONCLUSION: We conclude the MET performs at least as well as the BGS standard and offers the additional advantage of direct measurement of per capita human-biting rates. If detection of arboviruses can be confirmed in MET-collected Aedes in future studies, this surveillance method could provide a valuable tool for surveillance and prediction on human arboviral exposure risk.


Subject(s)
Aedes/physiology , Arbovirus Infections/transmission , Flavivirus/isolation & purification , Insect Bites and Stings/epidemiology , Mosquito Vectors/physiology , Adult , Aedes/virology , Animals , Chikungunya Fever/transmission , Chikungunya virus/isolation & purification , Culex/physiology , Dengue/transmission , Dengue Virus/isolation & purification , Ecuador/epidemiology , Female , Humans , Male , Middle Aged , Mosquito Vectors/virology , Zika Virus/isolation & purification , Zika Virus Infection/transmission
4.
PLoS Genet ; 11(4): e1005141, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25880677

ABSTRACT

Although many theoretical models of sympatric speciation propose that genes responsible for assortative mating amongst incipient species should be associated with genomic regions protected from recombination, there are few data to support this theory. The malaria mosquito, Anopheles gambiae, is known for its sympatric cryptic species maintained by pre-mating reproductive isolation and its putative genomic islands of speciation, and is therefore an ideal model system for studying the genomic signature associated with incipient sympatric speciation. Here we selectively introgressed the island of divergence located in the pericentric region of the X chromosome of An. gambiae s.s. into its sister taxon An. coluzzii through 5 generations of backcrossing followed by two generations of crosses within the introgressed strains that resulted in An. coluzzii-like recombinant strains fixed for the M and S marker in the X chromosome island. The mating preference of recombinant strains was then tested by giving virgin recombinant individuals a choice of mates with X-islands matching and non-matching their own island type. We show through genetic analyses of transferred sperm that recombinant females consistently mated with matching island-type males thereby associating assortative mating genes with the X-island of divergence. Furthermore, full-genome sequencing confirmed that protein-coding differences between recombinant strains were limited to the experimentally swapped pericentromeric region. Finally, targeted-genome comparisons showed that a number of these unique differences were conserved in sympatric field populations, thereby revealing candidate speciation genes. The functional demonstration of a close association between speciation genes and the X-island of differentiation lends unprecedented support to island-of-speciation models of sympatric speciation facilitated by pericentric recombination suppression.


Subject(s)
Anopheles/genetics , Chromosomes, Insect/genetics , Genetic Speciation , Mating Preference, Animal , Sympatry , X Chromosome/genetics , Animals , Anopheles/physiology , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...