Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 9(35): 29654-29659, 2017 Sep 06.
Article in English | MEDLINE | ID: mdl-28805366

ABSTRACT

Optimization of the interface between the electron transport layer (ETL) and the hybrid perovskite is crucial to achieve high-performance perovskite solar cell (PSC) devices. Fullerene-based compounds have attracted attention as modifiers on the surface properties of TiO2, the archetypal ETL in regular n-i-p PSCs. However, the partial solubility of fullerenes in the aprotic solvents used for perovskite deposition hinders its application to low-temperature solution-processed PSCs. In this work, we introduce a new method for fullerene modification of TiO2 layers derived from nanoparticles (NPs) inks. Atomic force microscopy characterization reveals that the resulting ETL is a network of TiO2-NPs interconnected by fullerenes. Interestingly, this surface modification enhances the bottom interface of the perovskite by improving the charge transfer as well as the top perovskite interface by reducing surface trap states enhancing the contact with the p-type buffer layer. As a result, rigid PSCs reached a 17.2% power conversion efficiency (PCE), while flexible PSCs exhibited a remarkable stabilized PCE of 12.2% demonstrating the potential application of this approach for further scale-up of PSC devices.

2.
Nanoscale ; 9(27): 9440-9446, 2017 Jul 13.
Article in English | MEDLINE | ID: mdl-28660942

ABSTRACT

Effective control of the interface between the metal cathode and the electron transport layer (ETL) is critical for achieving high performance p-i-n planar heterojunction perovskite solar cells (PSCs). Several organic molecules have been explored as interlayers between the silver (Ag) electrode and the ETL for the improvement in the photovoltaic conversion efficiency (PCE) of p-i-n planar PSCs. However, the role of these organic molecules in the charge transfer at the metal/ETL interface and the chemical degradation processes of PSCs has not yet been fully understood. In this work, we systematically explore the effects of the interfacial modification of the Ag/ETL interface on PSCs using rhodamine 101 as a model molecule. By the insertion of rhodamine 101 as an interlayer between Ag and fullerene derivatives (PC60BM and PC70BM) ETLs improve the PCE as well as the stability of p-i-n planar PSCs. Atomic force microscopy (AFM) characterization reveals that rhodamine passivates the defects at the PCBM layer and reduces the band bending at the PCBM surface. In consequence, charge transfer from the PCBM towards the Ag electrode is enhanced leading to an increased fill factor (FF) resulting in a PCE up to 16.6%. Moreover, rhodamine acts as a permeation barrier hindering the penetration of moisture towards the perovskite layer as well as preventing the chemical interaction of perovskite with the Ag electrode. Interestingly, the work function of the metal cathode remains more stable due to the rhodamine incorporation. Consequently, a better alignment between the quasi-Fermi level of PCBM and the Ag work function is achieved minimizing the energy barrier for charge extraction. This work contributes to reveal the relevance of proper interfacial engineering at the metal-cathode/organic-semiconductor interface.

3.
ACS Appl Mater Interfaces ; 9(14): 12348-12354, 2017 Apr 12.
Article in English | MEDLINE | ID: mdl-28350447

ABSTRACT

Fabrication of solution-processed perovskite solar cells (PSCs) requires the deposition of high quality films from precursor inks. Frequently, buffer layers of PSCs are formed from dispersions of metal oxide nanoparticles (NPs). Therefore, the development of trustable methods for the preparation of stable colloidal NPs dispersions is crucial. In this work, a novel approach to form very compact semiconducting buffer layers with suitable optoelectronic properties is presented through a self-functionalization process of the nanocrystalline particles by their own amorphous phase and without adding any other inorganic or organic functionalization component or surfactant. Such interconnecting amorphous phase composed by residual nitrate, hydroxide, and sodium ions, proved to be fundamental to reach stable colloidal dispersions and contribute to assemble the separate crystalline nickel oxide NPs in the final film, resulting in a very homogeneous and compact layer. A proposed mechanism behind the great stabilization of the nanoparticles is exposed. At the end, the self-functionalized nickel oxide layer exhibited high optoelectronic properties enabling perovskite p-i-n solar cells as efficient as 16.6% demonstrating the pertinence of the presented strategy to obtain high quality buffer layers processed in solution at room temperature.

4.
J Opt Soc Am A Opt Image Sci Vis ; 26(1): 147-55, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19109611

ABSTRACT

The principles of amplitude and phase modulation of the spatial coherence of the optical field are discussed. They are based on the modification of the phase-space diagram of the field, provided by the marginal power spectrum, which allows synthesis of the modulating functions of the spatial coherence and the corresponding complex transmissions to be transferred onto a spatial light modulator for application purposes. Numerical and experimental results are presented. This novel technique can be applied in designing specific shapes of power distributions.

5.
J Opt Soc Am A Opt Image Sci Vis ; 25(10): 2518-27, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18830330

ABSTRACT

The phase-space representation of interference based on the marginal power spectrum gives new insight on interference, enlarging its potential applications by means of the principle of spatial coherence modulation. Carrier and (0,pi)-rays produced by three different types of supports are introduced for describing interference as the result of adding the radiant energy propagated by the carriers and the modulating energy (which can be positive or negative) propagated by the (0,pi)-rays. Numerical examples are presented.

6.
J Opt Soc Am A Opt Image Sci Vis ; 25(8): 1894-901, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18677351

ABSTRACT

The behavior of the marginal power spectrum as a two-channel-multiplexed hologram is analyzed. Its "negative energies" make it quite different from the conventional holograms, i.e., it is not recordable in general and the objects to be reconstructed (the cross-spectral densities at both the aperture and the observation planes) are virtual. The holographic reconstruction results from the superposition of the spatial coherence wavelets that carry the marginal power spectrum. These features make the marginal power spectrum a powerful tool for analysis and synthesis of optical fields, for instance, in optical information processing (signal encryption) and beam shaping for microlithography.

7.
Appl Opt ; 47(22): E27-38, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18670539

ABSTRACT

The phase-space representation of stationary random electromagnetic fields is developed by using electromagnetic spatial coherence wavelets. The propagation of the field's power and states of spatial coherence and polarization results from correlations between the components of the field vectors at pairs of points in space. Polarization domains are theoretically predicted as the structure of the field polarization at the observation plane. In addition, the phase-space representation provides a generalization of the Poynting theorem. Theoretical predictions are examined by numerically simulating the Young experiment with electromagnetic waves. The experimental implementation of these results is a current subject of research.

SELECTION OF CITATIONS
SEARCH DETAIL