Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-20154443

ABSTRACT

AO_SCPLOWBSTRACTC_SCPLOWSARS-CoV-2 is the newly emerged virus responsible for the global COVID-19 pandemic. There is an incomplete understanding of the host humoral immune response to SARS-CoV-2 during acute infection. Host factors such as age and sex as well the kinetics and functionality of antibody responses are important factors to consider as vaccine development proceeds. The receptor-binding domain of the CoV spike (RBD-S) protein is important in host cell recognition and infection and antibodies targeting this domain are often neutralizing. In a cross-sectional study of anti-RBD-S antibodies in COVID-19 patients we found equivalent levels in male and female patients and no age-related deficiencies even out to 93 years of age. The anti-RBD-S response was evident as little as 6 days after onset of symptoms and for at least 5 weeks after symptom onset. Anti-RBD-S IgG, IgM, and IgA responses were simultaneously induced within 10 days after onset, but isotype-specific kinetics differed such that anti-RBD-S IgG was most sustained over a 5-week period. The kinetics and magnitude of neutralizing antibody formation strongly correlated with that seen for anti-RBD-S antibodies. Our results suggest age- and sex-related disparities in COVID-19 fatalities are not explained by anti-RBD-S responses. The multi-isotype anti-RBD-S response induced by live virus infection could serve as a potential marker by which to monitor vaccine-induced responses.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-001008

ABSTRACT

The ongoing COVID-19 pandemic has caused an unprecedented need for rapid diagnostic testing. The Centers for Disease Control and Prevention (CDC) and the World Health Organization (WHO) recommend a standard assay that includes an RNA extraction step from a nasopharyngeal (NP) swab followed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to detect the purified SARS-CoV-2 RNA. The current global shortage of RNA extraction kits has caused a severe bottleneck to COVID-19 testing. We hypothesized that SARS-CoV-2 RNA could be detected from NP samples via a direct RT-qPCR assay that omits the RNA extraction step altogether, and tested this hypothesis on a series of blinded clinical samples. The direct RT-qPCR approach correctly identified 92% of NP samples (n = 155) demonstrated to be positive for SARS-CoV-2 RNA by traditional clinical diagnostic RT-qPCR that included an RNA extraction. Thus, direct RT-qPCR could be a front-line approach to identify the substantial majority of COVID-19 patients, reserving a repeat test with RNA extraction for those individuals with high suspicion of infection but an initial negative result. This strategy would drastically ease supply chokepoints of COVID-19 testing and should be applicable throughout the world.

SELECTION OF CITATIONS
SEARCH DETAIL