Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
ACS Catal ; 13(21): 14189-14198, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37942270

ABSTRACT

Supported bimetallic catalysts commonly exhibit higher rates of reaction compared to their monometallic counterparts, but the origin of these enhancements is often poorly defined. The recent discovery that cooperative redox enhancement effects in Au-Pd systems promote bimetallic catalysis in thermochemical oxidation is an important development in this field. This effect aligns two important research fields, thermo- and electrocatalysis, but questions relating to the generality and origin of the effect remain. Here, we demonstrate that these effects can be observed in reactions over a range of bimetal combinations and reveal the origin using a combination of electrochemical and material characterization. We disclose that the observed activity enhancement in thermochemical systems is a result of the electrochemical polarization of two disparate catalytic sites. This forms an alternative operating potential for a given bimetallic system that increases the driving force of each of the composite half reactions in oxidative dehydrogenation. We therefore uncover the physicochemical descriptors that dictate whether these enhancement effects will be exhibited by a particular combination of supported metal catalysts and determine the magnitude of the effect.

2.
ACS Catal ; 13(5): 2892-2903, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36910870

ABSTRACT

The aerobic oxidation of alcohols and aldehydes over supported heterogeneous catalysts can be considered as comprising two complementary and linked processes: dehydrogenation and oxygen reduction. Significant rate enhancements can be observed when these processes are catalyzed by independent active sites, coupled by electron transport between the two catalysts. This effect, termed cooperative redox enhancement (CORE), could significantly influence how researchers approach catalyst design, but a greater understanding of the factors which influence it is required. Herein, we demonstrate that the Au/Pd ratio used in physical mixtures of monometallic catalysts and phase-separated Au and Pd bimetallic catalysts dramatically influences the degree to which CORE effects can promote alcohol oxidation. Perhaps more interestingly, the roles of Au and Pd in this coupled system are determined to be interchangeable. Preliminarily, we hypothesize that this is attributed to the relative rates of the coupled reactions and demonstrate how physical properties can influence this. This deeper understanding of the factors which influence CORE is an important development in bimetallic catalysis.

3.
Nature ; 603(7900): 271-275, 2022 03.
Article in English | MEDLINE | ID: mdl-35038718

ABSTRACT

In oxidation reactions catalysed by supported metal nanoparticles with oxygen as the terminal oxidant, the rate of the oxygen reduction can be a limiting factor. This is exemplified by the oxidative dehydrogenation of alcohols, an important class of reactions with modern commercial applications1-3. Supported gold nanoparticles are highly active for the dehydrogenation of the alcohol to an aldehyde4 but are less effective for oxygen reduction5,6. By contrast, supported palladium nanoparticles offer high efficacy for oxygen reduction5,6. This imbalance can be overcome by alloying gold with palladium, which gives enhanced activity to both reactions7,8,9; however, the electrochemical potential of the alloy is a compromise between that of the two metals, meaning that although the oxygen reduction can be improved in the alloy, the dehydrogenation activity is often limited. Here we show that by separating the gold and palladium components in bimetallic carbon-supported catalysts, we can almost double the reaction rate compared with that achieved with the corresponding alloy catalyst. We demonstrate this using physical mixtures of carbon-supported monometallic gold and palladium catalysts and a bimetallic catalyst comprising separated gold and palladium regions. Furthermore, we demonstrate electrochemically that this enhancement is attributable to the coupling of separate redox processes occurring at isolated gold and palladium sites. The discovery of this catalytic effect-a cooperative redox enhancement-offers an approach to the design of multicomponent heterogeneous catalysts.


Subject(s)
Gold , Metal Nanoparticles , Alcohols , Alloys , Carbon , Catalysis , Oxidation-Reduction , Oxygen , Palladium
4.
Chemosphere ; 251: 126469, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32443245

ABSTRACT

Cinnamic acid was chosen as an exemplar molecule to study the effect of potential contaminants on the kinetics and mechanism of the photocatalytic destruction of hydrocarbons in aqueous solutions. We identify the principal intermediates in the photocatalytic reaction of the acid and corresponding alcohol, and propose a mechanism that explains the presence of these species. The impact of two likely contaminants of aqueous systems, sulfate and chloride ions were also studied. Whereas sulfate ions inhibit the degradation reaction at all concentrations, chloride ions, up to a concentration of 0.5 M, accelerate the removal of cinnamic acid from solution by a factor of 1.6. However, although cinnamic acid is removed, the pathway to complete oxidation is blocked by the chloride, with the acid being converted (in the presence of oxygen) into new products including acetophenone, 2-chloroacetophenone, 1-(2-chlorophenyl)ethenone and 1,2-dibenzoylethane. We speculate that the formation of these products involves chlorine radicals formed from the reaction of chloride ions with the photoinduced holes at the catalyst surface. Interestingly, we have shown that the 1-(2-chlorophenyl)ethenone and 1,2-dibenzoylethane products form from 2-chloroacetophenone when irradiated with 365 nm light in the absence of the catalyst. The formation of potentially dangerous side products in this reaction suggest that the practical implementation of the photocatalytic purification of contaminated water needs to considered very carefully if chlorides are likely to be present.


Subject(s)
Cinnamates/analysis , Light , Propanols/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods , Catalysis , Chlorine/chemistry , Cinnamates/radiation effects , Oxidation-Reduction , Propanols/radiation effects , Sulfates/chemistry , Titanium/chemistry , Water Pollutants, Chemical/radiation effects
5.
J Chem Phys ; 152(13): 134705, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32268741

ABSTRACT

The oxidation of glycerol under alkaline conditions in the presence of a heterogeneous catalyst can be tailored to the formation of lactic acid, an important commodity chemical. Despite recent advances in this area, the mechanism for its formation is still a subject of contention. In this study, we use a model 1 wt. % AuPt/TiO2 catalyst to probe this mechanism by conducting a series of isotopic labeling experiments with 1,3-13C glycerol. Optimization of the reaction conditions was first conducted to ensure high selectivity to lactic acid in the isotopic labeling experiments. Selectivity to lactic acid increased with temperature and concentration of NaOH, but increasing the O2 pressure appeared to influence only the rate of reaction. Using 1,3-13C glycerol, we demonstrate that conversion of pyruvaldehyde to lactic acid proceeds via a base-promoted 1,2-hydride shift. There was no evidence to suggest that this occurs via a 2,1-methide shift under the conditions used in this study.

6.
J Phys Chem Lett ; 10(20): 6419-6424, 2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31577147

ABSTRACT

A key area of activity in contemporary molecular electronics is the chemical control of conductance of molecular junctions and devices. Here we study and modify a range of pyrrolodipyridines (carbazole-like) molecular wires. We are able to change the electrical conductance and quantum interference patterns by chemically regulating the bridging nitrogen atom in the tricyclic ring system. A series of eight different N-substituted pyrrolodipyridines has been synthesized and subjected to single-molecule electrical characterization using an STM break junction. Correlations of these experimental data with theoretical calculations underline the importance of the pyrrolic nitrogen in facilitating conductance across the molecular bridge and controlling quantum interference. The large chemical modulation for the meta-connected series is not apparent for the para-series, showing the competition between (i) meta-connectivity quantum interference phenomena and (ii) the ability of the pyrrolic nitrogen to facilitate conductance, that can be modulated by chemical substitution.

7.
Nat Commun ; 5: 3332, 2014 Feb 25.
Article in English | MEDLINE | ID: mdl-24567108

ABSTRACT

Benzaldehyde readily undergoes autoxidation to form benzoic acid on exposure to air at room temperature. Yet it can be formed in high yield from, for example, benzyl alcohol by oxidation using a variety of procedures and catalysts. Here we report the evidence to resolve this apparent paradox. It is confirmed that benzyl alcohol (and a number of other alcohols), even at low concentrations in benzaldehyde, inhibits the autoxidation. Furthermore we report on the structural features required for inhibition. Electron paramagnetic resonance spin trapping experiments demonstrate that benzyl alcohol intercepts, by hydrogen atom transfer, the benzoylperoxy radicals that play a key role in benzaldehyde autoxidation. A similar inhibition effect has also been observed for the aliphatic octanal/1-octanol system.

8.
J Org Chem ; 78(18): 9522-5, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-23971831

ABSTRACT

The nitration of benzene by nitronium ion in the gas phase has been re-examined. New features have been revealed; in particular, three transition states have been detected along the reaction coordinate. These have been shown by IRC analysis to connect an initially formed π complex (pi1) to a σ complex (sig1) (via ts1), sig1 to sig2 (via ts2), and finally sig2 to the product (via ts3). Sig2 also connects to another isomeric σ complex sig3 (via sig23ts), which connects to sig4 (via sig34ts).


Subject(s)
Benzene/chemistry , Nitrogen Oxides/chemistry , Quantum Theory , Ions/chemistry
9.
Phys Chem Chem Phys ; 15(29): 12147-55, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23677173

ABSTRACT

In the solvent free oxidation of benzyl alcohol, using supported gold-palladium nanoalloys, toluene is often one of major by-products and it is formed by the disproportionation of benzyl alcohol. Gold-palladium catalysts on acidic supports promote both the disproportionation of benzyl alcohol and oxidative dehydrogenation to form benzaldehyde. Basic supports completely switch off disproportionation and the gold-palladium nanoparticles catalyse the oxidative dehydrogenation reaction exclusively. In an attempt to provide further details on the course of these reactions, we have utilized in situ ATR-IR, in situ DRIFT and inelastic neutron scattering spectroscopic methods, and in this article we present the results of these in situ spectroscopic studies.

11.
Nat Chem ; 4(2): 134-9, 2012 Jan 24.
Article in English | MEDLINE | ID: mdl-22270646

ABSTRACT

The one-step transformation of C(7)-C(12) linear alkanes into more valuable oxygenates provides heterogeneous catalysis with a major challenge. In evaluating the potential of a classic mixed-metal-oxide catalyst, we demonstrate new insights into the reactivity of adsorbed oxygen species. During the aerobic gas-phase conversion of n-decane over iron molybdate, the product distribution correlates with the condition of the catalyst. Selectivity to oxygenated aromatics peaks at 350 °C while the catalyst is in a fully oxidized state, whereas decene and aromatic hydrocarbons dominate at higher temperatures. The high-temperature performance is consistent with an underlying redox mechanism in which lattice oxide ions abstract hydrogen from decane. At lower temperatures, the formation of oxygenated aromatics competes with the formation of CO(2), implying that electrophilic adsorbed oxygen is involved in both reactions. We suggest, therefore, that so-called non-selective oxygen is capable of insertion into carbon-rich surface intermediates to generate aromatic partial oxidation products.


Subject(s)
Alkanes/chemistry , Oxygen/chemistry , Catalysis , Oxidation-Reduction , Powder Diffraction
12.
Adv Mater ; 24(5): 653-7, 2012 Feb 02.
Article in English | MEDLINE | ID: mdl-22083901

ABSTRACT

The length dependence of charge transport is evaluated in three families of porphyrin-based wires. Planar edge-fused tapes and alkyne-linked oligomers mediate efficient charge transport with exceptionally shallow distance dependence, whereas the conductances of the twisted singly linked chains decrease steeply with increasing oligomer length. The planar tapes are more conjugated than the alkyne-linked oligomers, but these two types of wires have similar conductance attenuation factors.


Subject(s)
Alkynes/chemistry , Porphyrins/chemistry , Electric Conductivity , Molecular Structure
13.
Nat Nanotechnol ; 6(8): 517-23, 2011 Jul 31.
Article in English | MEDLINE | ID: mdl-21804555

ABSTRACT

Short chains of porphyrin molecules can mediate electron transport over distances as long as 5-10 nm with low attenuation. This means that porphyrin-based molecular wires could be useful in nanoelectronic and photovoltaic devices, but the mechanisms responsible for charge transport in single oligo-porphyrin wires have not yet been established. Here, based on electrical measurements of single-molecule junctions, we show that the conductance of the oligo-porphyrin wires has a strong dependence on temperature, and a weak dependence on the length of the wire. Although it is widely accepted that such behaviour is a signature of a thermally assisted incoherent (hopping) mechanism, density functional theory calculations and an accompanying analytical model strongly suggest that the observed temperature and length dependence is consistent with phase-coherent tunnelling through the whole molecular junction.


Subject(s)
Models, Chemical , Nanotechnology/methods , Porphyrins/chemistry , Electric Conductivity , Electron Transport , Models, Molecular , Nanowires/chemistry , Temperature
14.
Chemistry ; 17(23): 6524-32, 2011 May 27.
Article in English | MEDLINE | ID: mdl-21538605

ABSTRACT

In the solvent-free oxidation of benzyl alcohol to benzaldehyde using supported gold-palladium nanoparticles as catalysts, two pathways have been identified as the sources of the principal product, benzaldehyde. One is the direct catalytic oxidation of benzyl alcohol to benzaldehyde by O(2), whereas the second is the disproportionation of two molecules of benzyl alcohol to give equal amounts of benzaldehyde and toluene. Herein we report that by changing the metal oxide used to support the metal-nanoparticles catalyst from titania or niobium oxide to magnesium oxide or zinc oxide, it is possible to switch off the disproportionation reaction and thereby completely stop the toluene formation. It has been observed that the presence of O(2) increases the turnover number of this disproportionation reaction as compared to reactions in a helium atmosphere, implying that there are two catalytic pathways leading to toluene.

15.
Org Biomol Chem ; 9(4): 1079-84, 2011 Feb 21.
Article in English | MEDLINE | ID: mdl-21186395

ABSTRACT

By synthesising S-2-phenyl-N-(4-nitrophenyl)aziridine from S-phenylglycinol, it has been demonstrated that the aziridination of styrene by [N-(4-nitrobenzenesulfonyl)imino]phenyliodinane (nosyliminophenyliodinane, PhINNs) in the presence of S,S-2,2'-isopropylidene-bis(4-phenyl-2-oxazoline), catalysed by copper(II) triflate in CH(3)CN solution or heterogeneously by CuHY, has predominantly an R-configuration. The enantioselectivity of the aziridination of styrene by [N-arenesulfonylimino]-phenyliodinanes catalysed by copper-exchanged zeolite Y (CuHY), in conjunction with a chiral bis-oxazoline ligand, has been re-examined. In the case of PhINNs, it is shown that the product mixture of enantiomeric aziridines, on treatment with hexane, gives rise to a solid phase of low enantiomeric excess (ee) and a solution phase of high ee. Separation of the solid phase and recrystallisation afforded a true racemate (racemic compound), which has been confirmed by X-ray crystallography. The aziridine obtained from the solution phase could be recrystallised to produce the pure enantiomer originally in excess. A consequence of the new findings is that previous reports on the enantioselectivity of copper-catalysed aziridination, both in heterogeneous and homogeneous conditions, should be regarded with caution if the analytical procedure involved HPLC with injection of the enantiomeric mixture in a hexane-rich solvent. Such a method has been used in previous work from this laboratory, but has also been used elsewhere, following the procedure developed by Evans and co-workers when the (homogeneous) copper-catalysed aziridination by PhINTs was first discovered. Evidently, the change of substituent in the benzenesulfonyl group reduces the solubility in hexane, affording a solution phase of enhanced ee.


Subject(s)
Aziridines/chemistry , Copper/chemistry , Mesylates/chemistry , Styrene/chemistry , Sulfur Compounds/chemistry , Zeolites/chemistry , Catalysis , Crystallography, X-Ray , Models, Molecular , Phase Transition , Stereoisomerism
16.
Phys Chem Chem Phys ; 12(12): 2801-15, 2010 Mar 28.
Article in English | MEDLINE | ID: mdl-20449369

ABSTRACT

The measurement of the electrical properties of molecules, down to the single molecule level, has become an experimental reality in recent years. A number of methods are now available for experimentally achieving this feat. The common aim of these methods is to entrap a single or small numbers of molecules between a pair of metallic contacts. This topical review focuses on describing and comparing experimental methods for entrapping and measuring the electrical properties of single molecules in metallic contact gaps. After describing the methods, reasons are tendered for apparent discrepancies in the literature between measured single molecule conductance values, with a focus on the most widely studied alkanedithiol system. Illustrative examples are then presented of the determination of the electrical properties of a range of single molecular systems, in order to highlight the progress which has been made in recent years.

17.
Phys Chem Chem Phys ; 11(25): 5142-53, 2009 Jul 07.
Article in English | MEDLINE | ID: mdl-19562147

ABSTRACT

We report the preparation of Au-Pd nanocrystalline catalysts supported on TiO(2) and carbon prepared via a sol-immobilisation technique using three different preparation strategies; namely, simultaneous formation of the sols for both metals or initial formation of a seed sol of one of the metals followed by a separate step in which a coating sol of the second metal is added. The catalysts have been structurally characterised using a combination of transmission electron microscopy and X-ray photoelectron spectroscopy. The catalysts have been evaluated for the oxidation of benzyl alcohol under solvent-free conditions. The catalysts prepared using the sol immobilisation technique show higher activity when compared with catalysts prepared by impregnation, particularly as lower metal concentrations can be used. The Au-Pd catalysts were all more active than the corresponding monometallic supported Au or Pd catalysts. For 1 wt% Au-Pd/TiO(2) the order of metal addition in the preparation was not observed to be significant with respect to selectivity or activity. However, the 1 wt% Au-Pd/carbon catalysts are more active but less selective to benzaldehyde than the TiO(2)-supported catalysts when compared at iso-conversion. Furthermore, for the carbon-supported catalyst the order of metal addition has a very marked affect on activity. The carbon-supported catalysts are also more significantly affected by heat treatment, e.g. calcination at 400 degrees C leads to the activity being decreased by an order of magnitude, whereas the TiO(2)-supported catalysts show a 50% decrease in activity. Toluene is observed as a by-product of the reaction and conditions have been identified that minimise its formation. It is proposed that toluene and benzaldehyde are formed by competing parallel reactions of the initial benzyl intermediate via an adsorbed benzylidene species that can either be hydrogenated or oxidised. Hence, conditions that maximise the availability of oxygen on the catalyst surface favour the synthesis of benzaldehyde.


Subject(s)
Benzyl Alcohol/chemistry , Gold/chemistry , Palladium/chemistry , Catalysis , Combinatorial Chemistry Techniques , Microscopy, Electron, Transmission , Molecular Structure , Oxidation-Reduction , Particle Size , Solvents/chemistry , Toluene/chemistry
18.
J Am Chem Soc ; 130(27): 8582-3, 2008 Jul 09.
Article in English | MEDLINE | ID: mdl-18557617

ABSTRACT

A series of thioacetate-terminated butadiyne-linked porphyrin oligomers have been synthesized with one to three porphyrin repeat units. Single molecule electrical scanning tunneling microscopy measurements using the I(s) and I(t) methods were used to determine the molecule conductances for this series of oligomers. The molecular conductance shows an exponential falloff with sulfur-sulfur distance with a remarkably low attenuation factor of beta = (0.04 +/- 0.006) A-1.


Subject(s)
Electric Conductivity , Electric Wiring , Porphyrins/chemistry , Microscopy, Scanning Tunneling , Porphyrins/chemical synthesis , Sulfhydryl Compounds/chemistry , Sulfur/chemistry
19.
Chem Res Toxicol ; 20(1): 61-71, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17226927

ABSTRACT

Reactions of the strong skin sensitizer hexadec-1-ene-1,3-sultone with sodium hydroxide, sodium methoxide, sodium metabisulfite, sodium butanethiolate, n-butylamine, and aniline have been investigated, and the reaction products have been identified. Most of the nucleophiles studied react by nucleophilic addition (Michael type addition) to the double bond at the 2-position, although in most cases the final products result from further reactions of the initital adducts. The findings are considered together with those reported by Meschkat, Barratt, and Lepoittevin for reactions of hex-1-ene-1,3-sultone and hexane-1,3-sultone, and the implications of the two sets of findings for the mechanism of skin-sensitizing action are discussed. It is concluded that nucleophilic attack at the 3-position of the alk-1-ene-1,3-sultones occurs only with those nucleophiles, which either have very low reactivity in nucleophilic addition or are unable to give rise to thermodynamically stable products via initial reaction at the 2-position. It is further concluded that the observed differences in electrophilic reactivity between alk-1-ene-1,3-sultones and alkane-1,3-sultones are not large enough to rationalize the differences in skin sensitization properties between the two types of sultone. It is suggested that the differences in specificity arise because the alk-1-ene-1,3-sultones act as Michael type electrophiles whereas the alkane sultones act as SN2 electrophiles. It is suggested that the reason for the greater potency of the alk-1-ene-1,3-sultones may be the ability of the initial C2 adducts with protein to undergo further reactions by substitution at C3, leading to cross-linking and consequent perturbation to the protein tertiary structure.


Subject(s)
Skin/drug effects , Sulfones/toxicity , Butylamines/toxicity , Humans , Protein Binding , Serum Albumin/metabolism , Sodium Hydroxide/toxicity , Sulfones/metabolism
20.
Faraday Discuss ; 131: 253-64; discussion 307-24, 2006.
Article in English | MEDLINE | ID: mdl-16512376

ABSTRACT

The temperature dependence of the single molecule conductance (SMC) of alpha,omega-alkanedithiols has been investigated using a scanning tunnelling microscopy (STM) method. This is based on trapping molecules between a gold STM tip and a gold substrate and measuring directly the current across the molecule under different applied potentials. A pronounced temperature dependence of the conductance, which scales logarithmically with T(1), is observed in the temperature range between 293 and 353 K. It is proposed the origin of this dependence is the change in distribution between molecular conformers rather than changes in either the conduction mechanism or the electronic structure of molecule. For alkanedithiols the time averaged conformer distribution shifts to less elongated conformers at higher temperatures thus giving rise to higher conductance across the molecular bridges. This is analysed by first calculating energy differences between different conformers and then calculating their partition distribution. A simple tunnelling model is then used to calculate the temperature dependent conductance based on the conformer distribution. These findings demonstrate that charge transport through single organic molecules at ambient temperatures is a subtle and highly dynamic process that cannot be described by analysing only one molecular conformation corresponding to the lowest energy geometry of the molecule.

SELECTION OF CITATIONS
SEARCH DETAIL
...