Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
mSystems ; 8(6): e0051023, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37916830

ABSTRACT

IMPORTANCE: This study expands the growing understanding that protein acetylation is a highly regulated molecular toggle of protein function in both host anti-viral defense and viral replication. We describe a pro-viral role for the human enzyme SIRT2, showing that its deacetylase activity supports HCMV replication. By integrating quantitative proteomics, flow cytometry cell cycle assays, microscopy, and functional virology assays, we investigate the temporality of SIRT2 functions and substrates. We identify a pro-viral role for the SIRT2 deacetylase activity via regulation of CDK2 K6 acetylation and the G1-S cell cycle transition. These findings highlight a link between viral infection, protein acetylation, and cell cycle progression.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Humans , Cell Cycle/genetics , Cell Division , Cytomegalovirus/genetics , Cytomegalovirus Infections/genetics , Sirtuin 2/genetics
2.
Cell Rep ; 39(6): 110810, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35545036

ABSTRACT

The presence and abundance of viral proteins within host cells are part of the essential signatures of the cellular stages of viral infections. However, methods that can comprehensively detect and quantify these proteins are still limited, particularly for viruses with large protein coding capacity. Here, we design and experimentally validate a mass spectrometry-based Targeted herpesviRUS proTEin Detection (TRUSTED) assay for monitoring human viruses representing the three Herpesviridae subfamilies-herpes simplex virus type 1, human cytomegalovirus (HCMV), and Kaposi sarcoma-associated herpesvirus. We demonstrate assay applicability for (1) capturing the temporal cascades of viral replication, (2) detecting proteins throughout a range of virus concentrations and in in vivo models of infection, (3) assessing the effects of clinical therapeutic agents and sirtuin-modulating compounds, (4) studies using different laboratory and clinical viral strains, and (5) discovering a role for carbamoyl phosphate synthetase 1 in supporting HCMV replication.


Subject(s)
Herpesvirus 1, Human , Herpesvirus 8, Human , Cytomegalovirus , Humans , Mass Spectrometry , Virus Replication
3.
Curr Opin Virol ; 52: 135-147, 2022 02.
Article in English | MEDLINE | ID: mdl-34923282

ABSTRACT

Human cytomegalovirus (HCMV) is a pervasive ß-herpesvirus that causes lifelong infection. The lytic replication cycle of HCMV is characterized by global organelle remodeling and dynamic virus-host interactions, both of which are necessary for productive HCMV replication. With the advent of new technologies for investigating protein-protein and protein-nucleic acid interactions, numerous critical interfaces between HCMV and host cells have been identified. Here, we review temporal and spatial virus-host interactions that support different stages of the HCMV replication cycle. Understanding how HCMV interacts with host cells during entry, replication, and assembly, as well as how it interfaces with host cell metabolism and immune responses promises to illuminate processes that underlie the biology of infection and the resulting pathologies.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Cytomegalovirus/physiology , Host Microbial Interactions , Host-Pathogen Interactions , Humans , Virus Replication
4.
Article in English | MEDLINE | ID: mdl-34549195

ABSTRACT

The eukaryotic cell is compartmentalized into subcellular niches, including membrane-bound and membrane-less organelles. Proteins localize to these niches to fulfil their function, enabling discreet biological processes to occur in synchrony. Dynamic movement of proteins between niches is essential for cellular processes such as signalling, growth, proliferation, motility and programmed cell death, and mutations causing aberrant protein localization are associated with a wide range of diseases. Determining the location of proteins in different cell states and cell types and how proteins relocalize following perturbation is important for understanding their functions, related cellular processes and pathologies associated with their mislocalization. In this Primer, we cover the major spatial proteomics methods for determining the location, distribution and abundance of proteins within subcellular structures. These technologies include fluorescent imaging, protein proximity labelling, organelle purification and cell-wide biochemical fractionation. We describe their workflows, data outputs and applications in exploring different cell biological scenarios, and discuss their main limitations. Finally, we describe emerging technologies and identify areas that require technological innovation to allow better characterization of the spatial proteome.

5.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Article in English | MEDLINE | ID: mdl-34344827

ABSTRACT

Viruses modulate mitochondrial processes during infection to increase biosynthetic precursors and energy output, fueling virus replication. In a surprising fashion, although it triggers mitochondrial fragmentation, the prevalent pathogen human cytomegalovirus (HCMV) increases mitochondrial metabolism through a yet-unknown mechanism. Here, we integrate molecular virology, metabolic assays, quantitative proteomics, and superresolution confocal microscopy to define this mechanism. We establish that the previously uncharacterized viral protein pUL13 is required for productive HCMV replication, targets the mitochondria, and functions to increase oxidative phosphorylation during infection. We demonstrate that pUL13 forms temporally tuned interactions with the mitochondrial contact site and cristae organizing system (MICOS) complex, a critical regulator of cristae architecture and electron transport chain (ETC) function. Stimulated emission depletion superresolution microscopy shows that expression of pUL13 alters cristae architecture. Indeed, using live-cell Seahorse assays, we establish that pUL13 alone is sufficient to increase cellular respiration, not requiring the presence of other viral proteins. Our findings address the outstanding question of how HCMV targets mitochondria to increase bioenergetic output and expands the knowledge of the intricate connection between mitochondrial architecture and ETC function.


Subject(s)
Cytomegalovirus Infections/metabolism , Cytomegalovirus/physiology , Mitochondria/metabolism , Mitochondria/virology , Viral Proteins/metabolism , Cytomegalovirus/metabolism , Cytomegalovirus/pathogenicity , Cytomegalovirus Infections/virology , Electron Transport , Host-Pathogen Interactions/physiology , Humans , Mitochondria/ultrastructure , Oxidative Phosphorylation , Viral Proteins/genetics , Virus Replication
6.
J Proteome Res ; 18(5): 1929-1938, 2019 05 03.
Article in English | MEDLINE | ID: mdl-30913880

ABSTRACT

As cellular metabolic hubs, mitochondria are the main energy producers for the cell. These organelles host essential energy producing biochemical processes, including the TCA cycle, fatty acid oxidation, and oxidative phosphorylation. An accumulating body of literature has demonstrated that a majority of mitochondrial proteins are decorated with diverse posttranslational modifications (PTMs). Given the critical roles of these proteins in cellular metabolic pathways and response to environmental stress or pathogens, understanding the role of PTMs in regulating their functions has become an area of intense investigation. A major family of enzymes that regulate PTMs within the mitochondria are sirtuins (SIRTs). Albeit until recently the least understood sirtuin, SIRT4 has emerged as an enzyme capable of removing diverse PTMs from its substrates, thereby modulating their functions. SIRT4 was shown to have ADP-ribosyltransferase, deacetylase, lipoamidase, and deacylase enzymatic activities. As metabolic dysfunction is linked to human disease, SIRT4 levels and activities have been implicated in modulating susceptibility to hyperinsulinemia and diabetes, liver disease, cancer, neurodegeneration, heart disease, aging, and pathogenic infections. Therefore, SIRT4 has emerged as a possible candidate for targeted therapeutics. Here, we discuss the diverse enzymatic activities and substrates of SIRT4 and its roles in human health and disease.


Subject(s)
Aging/genetics , Mitochondria/enzymology , Mitochondrial Proteins/genetics , Protein Processing, Post-Translational , Sirtuins/genetics , Aging/metabolism , Communicable Diseases/drug therapy , Communicable Diseases/enzymology , Communicable Diseases/genetics , Diabetes Mellitus/drug therapy , Diabetes Mellitus/enzymology , Diabetes Mellitus/genetics , Gene Expression , Heart Diseases/drug therapy , Heart Diseases/enzymology , Heart Diseases/genetics , Humans , Hyperinsulinism/drug therapy , Hyperinsulinism/enzymology , Hyperinsulinism/genetics , Liver Diseases/drug therapy , Liver Diseases/enzymology , Liver Diseases/genetics , Mitochondria/drug effects , Mitochondria/pathology , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Molecular Targeted Therapy/methods , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/genetics , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/enzymology , Neurodegenerative Diseases/genetics , Protein Conformation , Sirtuins/chemistry , Sirtuins/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...