Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Food Chem ; 456: 140078, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38878550

ABSTRACT

This study comprehensively characterised a protected designation of origin mussel 'Cozza di Scardovari' (Mytilus galloprovincialis) by examining how it is affected by the farming site (outer vs. inner area of the lagoon) and harvest time (21 April vs. 18 May vs. 16 June). Harvest time affected the marketable traits and fatty acid profile of mussels, whereas farming site scarcely affected marketable traits and mussel yields. Mussels from the inner area of the lagoon displayed a superior nutritional profile, including higher contents of proteins (7.8% vs. 7.4%; P < 0.05), lipids (1.2% vs. 1.0%; P < 0.001) and essential amino acids such as tryptophan (+24%; P < 0.05) and valine (+8%; P < 0.05), with a more favourable n-3/n-6 ratio (7.7 vs. 7.0; P < 0.001) than those from the close-to-sea area. Volatile organic compounds, mainly octanoic acid, dimethyl sulphide and 1-penten-3-ol, differed between farming sites within the same lagoon.

2.
J Mass Spectrom ; 58(10): e4959, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37491759

ABSTRACT

Higher alcohols and esters are among the predominant classes of volatile organic compounds (VOCs) that influence the quality of beer. The concentrations of these compounds are determined through a specific yeast strain selection and fermentation conditions. The effect of yeast strains on the formation of higher alcohols and esters throughout fermentations (at 20°C) was investigated. Flavour-relevant esters (ethyl acetate, isoamyl acetate, ethyl hexanoate and ethyl octanoate) and higher alcohols (isoamyl alcohol, isobutyl alcohol and phenylethyl alcohol) were monitored throughout the fermentation using proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS) coupled with an automated sampling system for continuous measurements. Compound identification was confirmed by analysis of samples using gas chromatography-mass spectrometry (GC-MS). Results demonstrated the specific time points where variation in higher alcohol and ester generation between yeast strains occurred. In particular, the concentrations of isoamyl acetate, ethyl octanoate and isoamyl alcohol between yeast strains were significantly different over the first 2 days of fermentation; whereas, after Day 3, no significant differences were observed. The two Saccharomyces pastorianus strains produced comparable concentrations of the key higher alcohols and esters. However, the key higher alcohol and ester concentrations varied greatly between the two S. cerevisiae strains. The use of PTR-ToF-MS to rapidly measure multiple yeast strains provides new insights on fermentation for brewers to modify the sensory profile and optimise quality.


Subject(s)
Saccharomyces cerevisiae , Wine , Fermentation , Esters/analysis , Beer/analysis , Ethanol , Wine/analysis
3.
Front Mol Biosci ; 10: 1155564, 2023.
Article in English | MEDLINE | ID: mdl-37122562

ABSTRACT

The application of direct-injection mass spectrometric (DI-MS) techniques, like Proton Transfer Reaction Time of Flight Mass Spectrometry (PTR-ToF-MS) has been suggested as a reliable phenotyping tool for fruit volatilome assessment in both genetic and quality-related studies. In this study the complexity of raspberry aroma was investigated by a comprehensive untargeted VOC analysis, done by combining SPME-GC-MS and PTR-ToF-MS assessments with multi-block discriminant analysis using the DIABLO mixOmics framework. The aim was to acquire an exhaustive characterization of the raspberry volatilome according to different fruit ripening stages (pink, ripe, and overripe) and genetic variances (50 accessions), as well as to investigate the potential of PTR-ToF-MS as a rapid and high throughput VOC phenotyping tool to address issues related to raspberry fruit quality. Results of this study demonstrated the complementarity between SPME-GC-MS and PTR-ToF-MS techniques to evaluate the raspberry aroma composition. PTR-ToF-MS generates reliable raspberry VOC fingerprints mainly due to a reduced compound fragmentation and precise content estimation. In addition, the high collinearity between isomers of monoterpenes and norisoprenoids, discovered by GC analysis, reduces the main analytic limitation of PTR-ToF-MS of not being able to separate isomeric molecules. The high similarity between the VOC matrices obtained by applying PTR-ToF-MS and SPME-GC-MS confirmed the possibility of using PTR-ToF-MS as a reliable high throughput phenotyping tool for raspberry volatiolome assessment. In addition, results provided by the germplasm collection investigation enabled to distinguish the best performing accessions, based on VOCs composition, to be used as superior parental lines for future breeding programs.

4.
Talanta ; 259: 124568, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37088040

ABSTRACT

Gas chromatography coupled with ion mobility spectrometry (IMS) is an analytical tool which is rapidly becoming widespread in the analysis of food volatiles. Despite this increasing popularity, an assessment of the IMS response for several flavor compound classes is not yet available. This study focuses on alkyl pyrazines and their determination in roasted hazelnut pastes. These Maillard reaction products are crucial to determine the aromatic profile of roasted foods and are suitable markers for industrial roasting monitoring. The instrumental response of 8 alkyl pyrazines was studied using a model matrix and a matrix matching approach. The results showed a relevant effect of the pyrazine ring substitution pattern on the concentration-response curve trends, highlighting that an external standardization of the IMS response is required to make possible relative abundance comparisons between analytes. A response standardization was therefore developed and applied to determine alkyl pyrazines in samples with different roasting intensity and geographical and botanical origin.


Subject(s)
Corylus , Volatile Organic Compounds , Gas Chromatography-Mass Spectrometry/methods , Corylus/chemistry , Pyrazines/analysis , Ion Mobility Spectrometry , Volatile Organic Compounds/analysis
5.
Sci Rep ; 13(1): 2213, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36750680

ABSTRACT

Volatile organic compounds (VOCs) might mediate microbial interactions, especially in spatially structured environments, such as soil. However, the variety and specificity of VOC production are poorly understood. Here, we studied 25 Mortierellaceae strains belonging to the genera Linnemannia and Entomortierella in both pure and co-culture with Pseudomonas helmanticensis under laboratory conditions. We analysed both the fungal growth depending on co-cultivation and the cultures' volatilomes applying proton-transfer-reaction time-of-flight and gas chromatography-mass spectrometry (PTR-ToF-MS and GC-MS). In a strain-specific manner, we found the fungi's radial growth rate and colony morphology affected by the presence of P. helmanticensis. The fungus seemed to generally reduce the bacterial growth. The volatilomes of the fungal and bacterial pure and co-cultures were diverse. While the fungi frequently consumed VOCs, P. helmanticensis produced a higher diversity and amount of VOCs than any fungal strain. Our results support that both the pure and co-culture volatilomes are taxonomically conserved. Taken together, our data supports the relevance of VOCs in Mortierellaceae-P. helmanticensis interaction. We also discuss individual VOCs that appear relevant in the interaction.


Subject(s)
Fungi , Volatile Organic Compounds , Gas Chromatography-Mass Spectrometry/methods , Volatile Organic Compounds/analysis , Protons
6.
J Dairy Sci ; 103(2): 1377-1390, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31785882

ABSTRACT

A shortage in crude protein (CP) and supplementation of conjugated linoleic acids (CLA) in the diets of dairy cows could improve the dairy industry's ecological footprint and the nutritional value of milk, but it is not known what effect such a strategy might have on the aroma profiles of dairy products. The aim of this work was to study the effects of reducing the dietary CP content (from 150 to 123 g/kg of dry matter), with or without a supply of rumen-protected CLA (7.9 g/d C18:2 cis-9,trans-11 and 7.7 g/d C18:2 trans-10,cis-12), on the volatile organic compound (VOC) profile of cheeses ripened for 3 mo. Twenty mid-lactation Holstein-Friesian cows were reared in 4 pens (5 to a pen), and fed 4 different experimental diets over 4 periods of 3 wk each, following a 4 × 4 Latin square design. Twice in each period, 10-L milk samples were taken from each group and used to produce 32 cheeses, which we then analyzed for VOC by solid-phase microextraction and gas chromatography-mass spectrometry. We detected 48 VOC belonging to 10 chemical classes (11 alcohols, 8 ketones, 8 esters, 7 acids, 4 aldehydes, 4 sulfurs, 2 lactones, 2 phenolic, 1 monoterpene, 1 hydrocarbon); these were expressed as concentrations in cheese (quantitative data) or as proportions of total VOC (qualitative data). The results of mixed model analysis showed that the majority of VOC families and individual VOC in ripened cheese were affected by the dietary treatments: CP shortage depressed the concentrations of volatile aldehydes and increased the proportions of some esters and limonene, whereas CLA increased the concentration of total VOC, particularly several acids and esters, and decreased the proportions of ketones and phenolic compounds. The interaction between dietary CP and CLA affected the proportions of alcohols and acids. We performed a factor analysis to extract 5 latent explanatory variables from the individual VOC, which represented 79% of total VOC variance for the quantitative data and 78% for the qualitative data. Addition of CLA decreased the first qualitative factor (the "base aroma" of cheese, explaining 44% of total variance), whereas CP reduction increased the second quantitative factor ("ethyl esters," 15% of total variance) and the third qualitative factor ("butan-," 9% of total variance). In summary, the VOC profile of ripened cheese was heavily influenced by CP content and CLA supplementation in the diets of dairy cows, but the effect on sensorial properties of cheese is also worth considering.


Subject(s)
Cattle/physiology , Cheese/analysis , Dietary Supplements/analysis , Linoleic Acids, Conjugated/analysis , Milk/chemistry , Volatile Organic Compounds/chemistry , Animal Feed/analysis , Animals , Dairying , Diet/veterinary , Dietary Proteins/analysis , Female , Gas Chromatography-Mass Spectrometry/veterinary , Lactation , Rumen/chemistry , Solid Phase Microextraction/veterinary
7.
Molecules ; 24(23)2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31779088

ABSTRACT

In this paper, the influence of flavour modification, artificially induced, on consumer acceptability of apple fruit is studied. The method consists of modifying the flavour of a real food matrix dipping apples into flavour solutions. Two flavouring compounds (linalool and anethole) that were responsible of "floral" and "anise" aroma descriptors, respectively, were considered here. The effectiveness of flavouring treatments was confirmed by instrumental analysis of volatile compounds profile using solid-phase microextraction gas chromatography/mass spectrometry (SPME/GC-MS) and by discriminative and descriptive sensory analyses. The effect of flavour-impact was evaluated in an informed test on the two flavoured 'Fuji' apples: the consumers were asked to evaluate the global liking of the treated and non-treated apples with information regarding the aromatic features. Participants' additional data on the characteristics on their "ideal apple", attitudes toward natural food, food neophobia, and demographic data were also recorded by specific questionnaires. A statistically significant effect on liking was found for the flavour factor, whereas external information only affected apple acceptance for subgroups of consumers, depending on their attitude towards food.


Subject(s)
Flavoring Agents/chemistry , Malus/chemistry , Fruit/chemistry , Gas Chromatography-Mass Spectrometry/methods , Humans , Odorants , Solid Phase Microextraction/methods , Taste/physiology , Volatile Organic Compounds/chemistry
8.
J Mass Spectrom ; 53(9): 824-832, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30062818

ABSTRACT

A quantitative method, based on SPME GC-MS, for the quantification of volatile compounds derived from lipoxygenase pathway, considered the most important for the aroma of high-quality olive oil, was developed. The method was used to study the variation within the extra virgin olive oils from 67 cultivars of the Tuscan olive germplasm conserved at "Santa Paolina" experimental farm (Follonica, Italy). A great variability was observed among the 67 cultivars both for the total amount of volatile compounds and for the different ratios between the groups of volatile compounds from common precursors. The aim was to obtain basic information on the characteristics and the quality of the oils obtainable from nonwidely cultivated olive varieties. These data can support the reintroduction in the production chain of old autochthonous varieties and for exploitation in breeding programs as a source of positive characters to transmit to the progeny.


Subject(s)
Olea/chemistry , Olive Oil , Solid Phase Microextraction/methods , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry/methods , Limit of Detection , Linear Models , Lipoxygenases/metabolism , Odorants/analysis , Olive Oil/analysis , Olive Oil/chemistry , Reproducibility of Results , Seeds/chemistry , Volatile Organic Compounds/metabolism
9.
Front Plant Sci ; 8: 617, 2017.
Article in English | MEDLINE | ID: mdl-28491071

ABSTRACT

Blueberry (Vaccinium spp.) fruit consumption has increased over the last 5 years, becoming the second most important soft fruit species after strawberry. Despite the possible economic and sensory impact, the blueberry volatile organic compound (VOC) composition has been poorly investigated. Thus, the great impact of the aroma on fruit marketability stimulates the need to step forward in the understanding of this quality trait. Beside the strong effect of ripening, blueberry aroma profile also varies due to the broad genetic differences among Vaccinium species that have been differently introgressed in modern commercial cultivars through breeding activity. In the present study, divided into two different activities, the complexity of blueberry aroma was explored by an exhaustive untargeted VOC analysis, performed by two complementary methods: SPME-GC-MS (solid phase microextraction- gas chromatography-mass spectrometry) and PTR-ToF-MS (proton transfer reaction-time of flight-mass spectrometry). The first experiment was aimed at determining the VOC modifications during blueberry ripening for five commercially representative cultivars ("Biloxi," "Brigitta Blue," "Centurion," "Chandler," and "Ozark Blue") harvested at four ripening stages (green, pink, ripe, and over-ripe) to outline VOCs dynamic during fruit development. The objective of the second experiment was to confirm the analytical capability of PTR-ToF-MS to profile blueberry genotypes and to identify the most characterizing VOCs. In this case, 11 accessions belonging to different Vaccinium species were employed: V. corymbosum L. ("Brigitta," "Chandler," "Liberty," and "Ozark Blue"), V. virgatum Aiton ("Centurion," "Powder Blue," and "Sky Blue"), V. myrtillus L. (three wild genotypes of different mountain locations), and one accession of V. cylindraceum Smith. This comprehensive characterization of blueberry aroma allowed the identification of a wide pull of VOCs, for the most aldehydes, alcohols, terpenoids, and esters that can be used as putative biomarkers to rapidly evaluate the blueberry aroma variations related to ripening and/or senescence as well as to genetic background differences. Moreover, the obtained results demonstrated the complementarity between chromatographic and direct-injection mass spectrometric techniques to study the blueberry aroma.

10.
Sci Rep ; 7: 44950, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28322320

ABSTRACT

Sweetness is one of the main drivers of consumer preference, and thus is given high priority in apple breeding programmes. Due to the complexity of sweetness evaluation, soluble solid content (SSC) is commonly used as an estimation of this trait. Nevertheless, it has been demonstrated that SSC and sweet taste are poorly correlated. Though individual sugar content may vary greatly between and within apple cultivars, no previous study has tried to investigate the relationship between the amount of individual sugars, or ratios of these, and apple sweetness. In this work, we quantified the major sugars (sucrose, glucose, fructose, xylose) and sorbitol and explored their influence on perceived sweetness in apple; we also related this to malic acid content, SSC and volatile compounds. Our data confirmed that the correlation between sweetness and SSC is weak. We found that sorbitol content correlates (similarly to SSC) with perceived sweetness better than any other single sugar or total sugar content. The single sugars show no differentiable importance in determining apple sweetness. Our predictive model based on partial least squares regression shows that after sorbitol and SSC, the most important contribution to apple sweetness is provided by several volatile compounds, mainly esters and farnesene.


Subject(s)
Malus/anatomy & histology , Malus/chemistry , Taste , Fruit/anatomy & histology , Fruit/chemistry , Genotype , Humans , Malus/genetics , Organic Chemicals , Phytochemicals/analysis , Phytochemicals/chemistry , Sorbitol , Sugars
11.
J Mass Spectrom ; 50(1): 56-64, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25601675

ABSTRACT

Drying process is commonly used to allow long time storage of valuable porcini mushrooms (Boletus edulis). Although considered a stable product dried porcini flavour changes during storage. Monitoring of volatile compounds during shelf life may help to understand the nature of the observed changes. In the present work two mass spectrometric techniques were used to monitor the evolution of volatile compounds during commercial shelf life of dried porcini. Solid phase microextraction (SPME) coupled to gas chromatography - mass spectrometry (GC-MS) allowed the identification of 66 volatile compounds, 36 of which reported for the first time, monitored during the commercial shelf life of dried porcini. Proton transfer reaction - time of flight - mass spectrometry (PTR-ToF-MS) , a direct injection mass spectrometric technique, was shown to be a fast and sensitive instrument for the general monitoring of volatile compound evolution during storage of dried porcini. Furthermore, PTR-ToF-MS grants access to compounds whose determination would otherwise require lengthy pre-concentration and/or derivatization steps such as ammonia and small volatile amines. The two techniques, both used for the first time to study dried porcini, provided detailed description of time evolution of volatile compounds during shelf life. Alcohols, aldehydes, ketones and monoterpenes diminish during the storage while carboxylic acids, pyrazines, lactones and amines increase. The storage temperature modifies the rate of the observed changes influencing the final quality of the dried porcini. We showed the advantages of both techniques, suggesting a strategy to be adopted to follow time evolution of volatile compounds in food products during shelf life, based on the identification of compounds by GC-MS and the rapid time monitoring by PTR-ToF-MS measurements in order to maximize the advantages of both techniques.


Subject(s)
Agaricales/chemistry , Gas Chromatography-Mass Spectrometry/methods , Mass Spectrometry/methods , Volatile Organic Compounds/analysis , Food Analysis/methods , Food Handling/methods , Solid Phase Microextraction/methods , Temperature
12.
Phytochemistry ; 72(16): 1999-2005, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21794883

ABSTRACT

Plant volatiles are signals used by herbivorous insects to locate host plants and select oviposition sites. Whether such volatiles are used as indicators of plant quality by adult insects in search of host plants has been rarely tested. We tested whether volatiles indicate plant quality by studying the oviposition of the grapevine moth Lobesia botrana on the grapevine plant Vitis vinifera. Host plants were infected with a variety of microorganisms, and larval fitness was correlated to the infected state of the substrate. Our results show an oviposition preference for volatiles that is significantly correlated with the fitness of the substrate. The chemical profiles of the bouquets from each V. vinifera-microorganism system are clearly differentiated in a PCA analysis. Both the volatile signal and the quality of the plant as larval food were affected by the introduction of microorganisms. Our study represents a broad approach to the study of plant-insect interactions by considering not only the direct effect of the plant but also the effect of plant-microorganism interactions on insect population dynamics.


Subject(s)
Moths/physiology , Vitis/chemistry , Volatile Organic Compounds/analysis , Animals , Female , Larva/drug effects , Larva/physiology , Male , Moths/drug effects , Odorants , Oviposition/drug effects , Sex Ratio , Vitis/metabolism , Vitis/physiology , Volatile Organic Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...