Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Geophys Res Atmos ; 122(19): 10384-10401, 2017 Oct 16.
Article in English | MEDLINE | ID: mdl-29963346

ABSTRACT

Aerosol Robotic Network (AERONET)-based nonspherical dust optical models are developed and applied to the Satellite Ocean Aerosol Retrieval (SOAR) algorithm as part of the Version 1 Visible Infrared Imaging Radiometer Suite (VIIRS) NASA 'Deep Blue' aerosol data product suite. The optical models are created using Version 2 AERONET inversion data at six distinct sites influenced frequently by dust aerosols from different source regions. The same spheroid shape distribution as used in the AERONET inversion algorithm is assumed to account for the nonspherical characteristics of mineral dust, which ensures the consistency between the bulk scattering properties of the developed optical models with the AERONET-retrieved microphysical and optical properties. For the Version 1 SOAR aerosol product, the dust optical models representative for Capo Verde site are used, considering the strong influence of Saharan dust over the global ocean in terms of amount and spatial coverage. Comparisons of the VIIRS-retrieved aerosol optical properties against AERONET direct-Sun observations at three island/coastal sites suggest that the use of nonspherical dust optical models significantly improves the retrievals of aerosol optical depth (AOD) and Ångström exponent by mitigating the well-known artifact of scattering angle dependence of the variables observed when incorrectly assuming spherical dust. The resulting removal of these artifacts results in a more natural spatial pattern of AOD along the transport path of Saharan dust to the Atlantic Ocean; i.e., AOD decreases with increasing distance transported, whereas the spherical assumption leads to a strong wave pattern due to the spurious scattering angle dependence of AOD.

2.
Aerosol Air Qual Res ; 16(11): 2831-2842, 2016 Nov.
Article in English | MEDLINE | ID: mdl-32908468

ABSTRACT

This study evaluates the height of biomass burning smoke aerosols retrieved from a combined use of Visible Infrared Imaging Radiometer Suite (VIIRS), Ozone Mapping and Profiler Suite (OMPS), and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations. The retrieved heights are compared against spaceborne and ground-based lidar measurements during the peak biomass burning season (March and April) over Southeast Asia from 2013 to 2015. Based on the comparison against CALIOP, a quality assurance (QA) procedure is developed. It is found that 74% (81-84%) of the retrieved heights fall within 1 km of CALIOP observations for unfiltered (QA-filtered) data, with root-mean-square error (RMSE) of 1.1 km (0.8-1.0 km). Eliminating the requirement for CALIOP observations from the retrieval process significantly increases the temporal coverage with only a slight decrease in the retrieval accuracy; for best QA data, 64% of data fall within 1 km of CALIOP observations with RMSE of 1.1 km. When compared with Micro-Pulse Lidar Network (MPLNET) measurements deployed at Doi Ang Khang, Thailand, the retrieved heights show RMSE of 1.7 km (1.1 km) for unfiltered (QA-filtered) data for the complete algorithm, and 0.9 km (0.8 km) for the simplified algorithm.

SELECTION OF CITATIONS
SEARCH DETAIL