Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PLoS One ; 14(11): e0222630, 2019.
Article in English | MEDLINE | ID: mdl-31721782

ABSTRACT

Residential land is expanding in the United States, and lawn now covers more area than the country's leading irrigated crop by area. Given that lawns are widespread across diverse climatic regions and there is rising concern about the environmental impacts associated with their management, there is a clear need to understand the geographic variation, drivers, and outcomes of common yard care practices. We hypothesized that 1) income, age, and the number of neighbors known by name will be positively associated with the odds of having irrigated, fertilized, or applied pesticides in the last year, 2) irrigation, fertilization, and pesticide application will vary quadratically with population density, with the highest odds in suburban areas, and 3) the odds of irrigating will vary by climate, but fertilization and pesticide application will not. We used multi-level models to systematically address nested spatial scales within and across six U.S. metropolitan areas-Boston, Baltimore, Miami, Minneapolis-St. Paul, Phoenix, and Los Angeles. We found significant variation in yard care practices at the household (the relationship with income was positive), urban-exurban gradient (the relationship with population density was an inverted U), and regional scales (city-to-city variation). A multi-level modeling framework was useful for discerning these scale-dependent outcomes because this approach controls for autocorrelation at multiple spatial scales. Our findings may guide policies or programs seeking to mitigate the potentially deleterious outcomes associated with water use and chemical application, by identifying the subpopulations most likely to irrigate, fertilize, and/or apply pesticides.


Subject(s)
Environment , Housing , Natural Resources , Agricultural Irrigation , Cities , Climate , Family Characteristics , Female , Fertilizers , Humans , Male , Middle Aged , Pesticides , Socioeconomic Factors , United States , Urban Population
2.
Ecol Appl ; 29(4): e01884, 2019 06.
Article in English | MEDLINE | ID: mdl-30933402

ABSTRACT

In natural grasslands, C4 plant dominance increases with growing season temperatures and reflects distinct differences in plant growth rates and water use efficiencies of C3 vs. C4 photosynthetic pathways. However, in lawns, management decisions influence interactions between planted turfgrass and weed species, leading to some uncertainty about the degree of human vs. climatic controls on lawn species distributions. We measured herbaceous plant carbon isotope ratios (δ13 C, index of C3 /C4 relative abundance) and C4 cover in residential lawns across seven U.S. cities to determine how climate, lawn plant management, or interactions between climate and plant management influenced C4 lawn cover. We also calculated theoretical C4 carbon gain predicted by a plant physiological model as an index of expected C4 cover due to growing season climatic conditions in each city. Contrary to theoretical predictions, plant δ13 C and C4 cover in urban lawns were more strongly related to mean annual temperature than to growing season temperature. Wintertime temperatures influenced the distribution of C4 lawn turf plants, contrary to natural ecosystems where growing season temperatures primarily drive C4 distributions. C4 cover in lawns was greatest in the three warmest cities, due to an interaction between climate and homeowner plant management (e.g., planting C4 turf species) in these cities. The proportion of C4 lawn species was similar to the proportion of C4 species in the regional grass flora. However, the majority of C4 species were nonnative turf grasses, and not of regional origin. While temperature was a strong control on lawn species composition across the United States, cities differed as to whether these patterns were driven by cultivated lawn grasses vs. weedy species. In some cities, biotic interactions with weedy plants appeared to dominate, while in other cities, C4 plants were predominantly imported and cultivated. Elevated CO2 and temperature in cities can influence C3 /C4 competitive outcomes; however, this study provides evidence that climate and plant management dynamics influence biogeography and ecology of C3 /C4 plants in lawns. Their differing water and nutrient use efficiency may have substantial impacts on carbon, water, energy, and nutrient budgets across cities.


Subject(s)
Ecosystem , Poaceae , Cities , Humans , Photosynthesis , Plant Dispersal , United States
4.
Oecologia ; 182(3): 653-65, 2016 11.
Article in English | MEDLINE | ID: mdl-27582122

ABSTRACT

Primary producers form the base of food webs but also affect other ecosystem characteristics, such as habitat structure, light availability, and microclimate. Here, we examine changes caused by 5-30+ years of nutrient addition and resulting increases in net primary productivity (NPP) in tundra, streams, and lakes in northern Alaska. The Arctic provides an important opportunity to examine how ecosystems characterized by low diversity and low productivity respond to release from nutrient limitation. We review how responses of algae and plants affect light availability, perennial biotic structures available for consumers, oxygen levels, and temperature. Sometimes, responses were similar across all three ecosystems; e.g., increased NPP significantly reduced light to the substrate following fertilization. Perennial biotic structures increased in tundra and streams but not in lakes, and provided important new habitat niches for consumers as well as other producers. Oxygen and temperature responses also differed. Life history traits (e.g., longevity) of the primary producers along with the fate of detritus drove the responses and recovery. As global change persists and nutrients become more available in the Arctic and elsewhere, incorporating these factors as response variables will enable better prediction of ecosystem changes and feedbacks in this biome and others.


Subject(s)
Lakes , Rivers , Arctic Regions , Ecosystem , Tundra
5.
Environ Sci Technol ; 49(5): 2724-32, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25660388

ABSTRACT

Aquatic ecosystems are sensitive to the modification of hydrologic regimes, experiencing declines in stream health as the streamflow regime is altered during urbanization. This study uses streamflow records to quantify the type and magnitude of hydrologic changes across urbanization gradients in nine U.S. cities (Atlanta, GA, Baltimore, MD, Boston, MA, Detroit, MI, Raleigh, NC, St. Paul, MN, Pittsburgh, PA, Phoenix, AZ, and Portland, OR) in two physiographic settings. Results indicate similar development trajectories among urbanization gradients, but heterogeneity in the type and magnitude of hydrologic responses to this apparently uniform urban pattern. Similar urban patterns did not confer similar hydrologic function. Study watersheds in landscapes with level slopes and high soil permeability had less frequent high-flow events, longer high-flow durations, lower flashiness response, and lower flow maxima compared to similarly developed watersheds in landscape with steep slopes and low soil permeability. Our results suggest that physical characteristics associated with level topography and high water-storage capacity buffer the severity of hydrologic changes associated with urbanization. Urbanization overlain upon a diverse set of physical templates creates multiple pathways toward hydrologic impairment; therefore, we caution against the use of the urban homogenization framework in examining geophysically dominated processes.


Subject(s)
Ecosystem , Hydrology , Rivers , Urbanization , Soil , United States
6.
Proc Natl Acad Sci U S A ; 111(12): 4432-7, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24616515

ABSTRACT

Changes in land use, land cover, and land management present some of the greatest potential global environmental challenges of the 21st century. Urbanization, one of the principal drivers of these transformations, is commonly thought to be generating land changes that are increasingly similar. An implication of this multiscale homogenization hypothesis is that the ecosystem structure and function and human behaviors associated with urbanization should be more similar in certain kinds of urbanized locations across biogeophysical gradients than across urbanization gradients in places with similar biogeophysical characteristics. This paper introduces an analytical framework for testing this hypothesis, and applies the framework to the case of residential lawn care. This set of land management behaviors are often assumed--not demonstrated--to exhibit homogeneity. Multivariate analyses are conducted on telephone survey responses from a geographically stratified random sample of homeowners (n = 9,480), equally distributed across six US metropolitan areas. Two behaviors are examined: lawn fertilizing and irrigating. Limited support for strong homogenization is found at two scales (i.e., multi- and single-city; 2 of 36 cases), but significant support is found for homogenization at only one scale (22 cases) or at neither scale (12 cases). These results suggest that US lawn care behaviors are more differentiated in practice than in theory. Thus, even if the biophysical outcomes of urbanization are homogenizing, managing the associated sustainability implications may require a multiscale, differentiated approach because the underlying social practices appear relatively varied. The analytical approach introduced here should also be productive for other facets of urban-ecological homogenization.

7.
J Environ Qual ; 43(6): 2146-51, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25602231

ABSTRACT

Urban, suburban, and exurban lawns are an increasingly important ecosystem type in the United States. There is great concern about the environmental performance of lawns, especially nitrate (NO) leaching and nitrous oxide (NO) flux associated with nitrogen (N) fertilizer use. Previous studies of lawn N dynamics have produced conflicting results, with some studies showing high NO leaching and NO flux and others showing lower losses and high retention and cycling of N inputs. We hypothesized that this variation is caused by differences in lawn management and soil properties that control root and soil organic matter (SOM) dynamics that influence N cycling processes. We tested these hypotheses by making measurements of soil NO, root biomass, rates of potential net N mineralization and nitrification, NO flux, and SOM levels in samples from the front and backyards of residential homes in suburban and exurban neighborhoods with contrasting soil types in the Baltimore metropolitan area. There were no differences between front and backyards, between suburban and exurban neighborhoods, or between different soil types. Further, there were no significant relationships between root biomass, SOM, soil NO levels, and NO fluxes. These results suggest that lawns have uniformly high rates of plant productivity that underlies high levels of SOM and N retention in these ecosystems across the Baltimore metropolitan area.

8.
J Environ Qual ; 43(3): 955-63, 2014 May.
Article in English | MEDLINE | ID: mdl-25602824

ABSTRACT

Denitrification is an anaerobic microbial process that transforms nitrate (NO) to nitrogen (N) gas, preventing the movement of NO into coastal waters where it can lead to eutrophication. Urbanization can reduce the potential for denitrification in riparian zones and streams by altering the environmental conditions that foster denitrification (i.e., low oxygen and available C). Here we evaluated the factors limiting denitrification potential in forested and herbaceous riparian and stream pool and organic debris dam habitats in urban, suburban, exurban, and forested reference watersheds in the Baltimore, Maryland metropolitan area. Denitrification potential (with and without C and NO additions) and microbial biomass C and N content, potential net N mineralization and nitrification, microbial respiration, and inorganic N pools were measured in summer (June) and fall (November). Denitrification potentials were highest in the herbaceous riparian soils and lowest in pool sediments. Forested riparian soil denitrification potential was highest in the exurban watershed but in other habitats did not vary with watershed type. Nearly all variables were higher in June than in November. Overall, C was a more important driver of denitrification potential than N; potentials in unamended and N-amended treatments were very similar (<200 ng N g h) and were much lower than in the C-amended and C+N-amended treatments (>800 ng N g h). Our results suggest that efforts to enhance denitrification in urban watersheds need to focus on the differential controls of denitrification across habitats, urban land use types, and seasons.

9.
Environ Sci Technol ; 47(11): 6047-51, 2013 Jun 04.
Article in English | MEDLINE | ID: mdl-23631416

ABSTRACT

Excess nitrogen (N) is a serious water-quality problem in most of the estuaries in the United States, especially those downstream of developed coastal basins. Understanding sources of N is a key first step in managing and mitigating N pollution. While the major sources of this N, atmospheric deposition, wastewater, fertilizer, and other agricultural sources are well-known, their relative importance as N sources to particular estuaries is not. Much of this uncertainty is due to difficulties associated with estimating the amount of atmospheric N deposition. Here, we show that deposition is 47% higher in urban and 22% higher in suburban areas compared to nonurban areas and that this deposition is primarily due to dry deposition. Moreover, this deposition is not being measured by the current deposition monitoring networks that were designed to measure broader regional patterns causing an underestimation of N inputs in urban areas.


Subject(s)
Environmental Pollutants/analysis , Nitrogen/analysis , Cities , Environmental Monitoring/methods , Estuaries , Ion Exchange Resins , Maryland , United States , Urbanization
10.
Environ Sci Technol ; 46(20): 10909-17, 2012 Oct 16.
Article in English | MEDLINE | ID: mdl-22963127

ABSTRACT

Humans have significantly altered urban landscapes, creating impervious surfaces, and changing drainage patterns that increase volume and velocity as well as frequency and timing of runoff following precipitation events. These changes in runoff have impaired streams and riparian areas that previously reduced watershed nitrogen (N) flux through uptake and denitrification. Stormwater control measures (SCM) are used most frequently to mitigate these hydrologic impacts. While SCM control runoff, their ability to remove N compared to natural riparian areas is not well-known. In this study we compared potential denitrification [as denitrification enzyme activity (DEA)] in five types of SCM (wet ponds, dry detention ponds, dry extended detention, infiltration basin, and filtering practices) and forested and herbaceous riparian areas in Baltimore, MD. DEA was higher in SCM (1.2 mg N kg(-1) hr(-1)) than in riparian areas (0.4 mg N kg(-1) hr(-1)). While DEA was highly correlated with soil moisture, organic matter, microbial biomass, and soil respiration areas across sites, it was always higher in SCM at equivalent levels of these variables. SCM appear to function as denitrification hotspots and, despite having similar microbial biomass, have higher potential denitrification than natural riparian areas.


Subject(s)
Denitrification , Environmental Restoration and Remediation/methods , Nitrogen/analysis , Rain , Rivers/chemistry , Water Pollutants, Chemical/analysis , Water Pollution/prevention & control , Cities , Environmental Monitoring , Floods , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...