Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 31(3): 034003, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30524049

ABSTRACT

Understanding organic-organic interfaces is rather challenging due to their large complexity regarding morphology, molecular orientation at the interface, interdiffusion, and energetics. One additional important but often neglected aspect are chemical reactions occuring at such interfaces. For solid interfaces between pentacene and Buckminster-Fullerene (C60) recently very efficient Diels-Alder (D-A) adduct formation has been reported. Considering the importance of pentacene/C60 as prototypical donor-acceptor combination to study fundamental processes in organic photovoltaics, understanding this effect is essential. In this work, we provide detailed NEXAFS-based investigations with respect to the temperature-dependence and reaction zone depth of this effect. Moreover, we widely vary the interface morphology and observe that the D-A adduct formation is most efficient for bulk heterojunctions of pentacene and C60. By also investigating further material combinations such as PEN/C60-PCBM and interfaces between C60 and functionalized acenes, we observe trends for the occurrence of the D-A adduct formation correlated with the different chemical properties of the involved compounds.

2.
J Am Chem Soc ; 123(51): 12849-56, 2001 Dec 26.
Article in English | MEDLINE | ID: mdl-11749543

ABSTRACT

The gradient corrected Perdew-Burke-Ernzerhof density functional in conjunction with a 3-21G basis set and periodic boundary conditions was employed to investigate the geometries and energies of C(2)F fluorinated armchair single wall carbon nanotubes (F-SWNT's) with diameters ranging from 16.4 to 4.2 A [(12,12) to (3,3)] as well as a C(2)F graphene sheet fluorinated on one side only. Using an isodesmic equation, we find that the thermodynamic stability of F-SWNT's increases with decreasing tube diameter. On the other hand, the mean bond dissociation energies of the C-F bonds increase as the tubes become thinner. The C-F bonds in the (5,5) F-SWNT's are about as strong as those in graphite fluoride (CF)(n)() and are also covalent albeit slightly (<0.04 A) stretched. Whereas a fluorine atom is found not to bind covalently to the concave surface of [60]fullerene, endohedral covalent binding is possible inside a (5,5) SWNT despite a diameter similar to that of the C(60) cage.

3.
J Am Chem Soc ; 123(35): 8482-95, 2001 Sep 05.
Article in English | MEDLINE | ID: mdl-11525655

ABSTRACT

Isomers of C(60)H(36) and He@C(60)H(36) have been synthesized by the Birch or dihydroanthracene reduction of C(60) and isolated by preparative high-pressure liquid chromatography. (3)He, (13)C, and (1)H NMR spectroscopic properties were then determined. A comparison of experimental chemical shifts against those computed using density functional theory (B3LYP) with polarized triple- and double-zeta basis sets for He and C,H, respectively, allowed provisional assignment of structure for several isomers to be made. Theoretical calculations have also been carried out to identify low-energy structures. The transfer hydrogenation method using dihydroanthracene gives a major C(60)H(36) isomer and a minor C(60)H(36) isomer with C(3) symmetry as determined by the (13)C NMR spectrum of C(60)H(36) and the (3)He NMR spectrum of the corresponding sample of (3)He@C(60)H(36). In view of the HPLC retention times and the (3)He chemical shifts observed for the Birch and dihydroanthracene reduction products, the two isomers generated by the latter procedure can be only minor isomers of the Birch reduction. A significant energy barrier apparently exists in the dihydroanthracene reduction of C(60) for the conversion of the C(3) and C(1) symmetry isomers of C(60)H(36) to the T symmetry isomer previously predicted by many calculations to be among the most stable C(60)H(36) isomers. Many of the (1)H NMR signals exhibited by C(60)H(36) (and C(60)H(18), previously reported) are unusually deshielded compared to "ordinary" organic compounds, presumably because the unusual structures of C(60)H(36) and C(60)H(18) result in chemical shift tensors with one or more unusual principal values. Calculations clearly show a relationship between exceptionally deshielded protons beta to a benzene ring in C(60)H(18) and C(60)H(36) and relatively long C-C bonds associated with these protons. The additional information obtained from 1D and 2D (1)H NMR spectra obtained at ultrahigh field strengths (up to 900 MHz) will serve as a critical test of chemical shifts to be obtained from future calculations on different C(60)H(36) isomers.

SELECTION OF CITATIONS
SEARCH DETAIL
...