Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
2.
PLoS One ; 18(7): e0283206, 2023.
Article in English | MEDLINE | ID: mdl-37471331

ABSTRACT

This report describes a two-year effort to survey the internal 137Cs and external ß-emitter contamination present in the feral dog population near the Chernobyl nuclear power plant (ChNPP) site, and to understand the potential for human radiation exposure from this contamination. This work was performed as an integral part of the radiation safety and control procedures of an animal welfare oriented trap-neuter-release (TNR) program. The measurement program focused on external contamination surveys using handheld ß-sensitive probes, and internal contamination studies using a simple whole-body counter. Internal 137Cs burden was measured non-invasively during post-surgical observation and recovery. External ß contamination surveys performed during intake showed that 21/288 animals had significant, removable external contamination, though not enough to pose a large hazard for incidental contact. Measurements with the whole-body counter indicated internal 137Cs body burdens ranging from undetectable (minimum detection level ∼100 Bq/kg in 2017, ∼30 Bq/kg in 2018) to approximately 30,000 Bq/kg. A total of 33 animals had 137Cs body-burdens above 1 kBq/kg, though none posed an external exposure hazard. The large variation in the 137Cs concentration in these animals is not well-understood, could be due to prey selection, access to human food scraps, or extended residence in highly contaminated areas. The small minority of animals with external contamination may pose a contamination risk allowing exposures in excess of regulatory standards.


Subject(s)
Chernobyl Nuclear Accident , Food Contamination, Radioactive , Radiation Exposure , Radiation Monitoring , Radioactive Hazard Release , Humans , Dogs , Animals , Body Burden , Cesium Radioisotopes/adverse effects , Cesium Radioisotopes/analysis , Radiation Exposure/adverse effects , Nuclear Power Plants , Food Contamination, Radioactive/analysis , Ukraine , Radiation Monitoring/methods
3.
Canine Med Genet ; 10(1): 1, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36890600

ABSTRACT

BACKGROUND: Natural and anthropogenic disasters can have long-lasting impacts on the genetics and structure of impacted populations. The 1986 Chernobyl Nuclear Power Plant disaster led to extensive contamination of the local environment and the wildlife therein. Several ecological, environmental, and genetic studies reported various effects of this disaster on animal, insect, and plant species; however, little work has been done to investigate the genetics of the free-breeding dogs that occupy the Chernobyl Exclusion Zone (CEZ). RESULTS: We define the population genetic structure of two groups of dogs that reside within the CEZ, one around the reactor site itself and another living within Chernobyl City. We found little evidence of gene flow and a significant degree of genetic differentiation between the two populations dogs, suggesting that these are two distinct populations despite occupying areas located just 16 km apart. With an FST-based outlier analysis, we then performed a genome-wide scan for evidence of directional selection within the dog populations. We found 391 outlier loci associated with genomic regions influenced by directional selection, from which we identified 52 candidate genes. CONCLUSIONS: Our genome scan highlighted outlier loci within or near genomic regions under directional selection, possibly in response to the multi-generational exposure faced. In defining the population structure and identifying candidate genes for these dog populations, we take steps towards understanding how these types of prolonged exposures have impacted these populations.


Wildlife populations can be greatly affected by disasters, whether they are natural or man-made. Disasters that result in contamination or habitat destruction can result in population declines or influence wildlife adaptation to these adverse environmental changes. The Chernobyl nuclear power plant disaster released an enormous quantity of ionizing radiation into the surrounding environment. Abandonment of military and industrial facilities, as well as subsequent cleanup and remediation efforts, resulted in further environmental contamination by a variety of non-radioactive toxic metals, chemicals, and compounds. Earlier studies investigated local wildlife responses to some of these exposures. In this study, we address the impact of this disaster on the population structure of free-breeding dogs that live around the power plant and in the nearby city of Chernobyl. In particular, we use genetic approaches to understand how these two populations of dogs interact and their breed composition, so that we may begin to understand how these populations have adapted to over 30 years of exposure to this harsh environment. In this foundational study we determined that while the two local populations of dogs are separated by only 16 km, they have very low rates of interpopulation migration. We also detected genetic evidence that suggests that these population may have adapted to exposures faced over many generations. In future studies, we aim to determine if the genetic variation detected is indeed a biological response to enable survival after multi-generational exposures to radiation, heavy metals, organic toxins, or other environmental contaminants. In this way, we then understand how the impact of environmental catastrophes such as the Chernobyl nuclear disaster can influence animal populations.

4.
Sci Adv ; 9(9): eade2537, 2023 03 03.
Article in English | MEDLINE | ID: mdl-36867701

ABSTRACT

The 1986 Chernobyl nuclear disaster initiated a series of catastrophic events resulting in long-term and widespread environmental contamination. We characterize the genetic structure of 302 dogs representing three free-roaming dog populations living within the power plant itself, as well as those 15 to 45 kilometers from the disaster site. Genome-wide profiles from Chernobyl, purebred and free-breeding dogs, worldwide reveal that the individuals from the power plant and Chernobyl City are genetically distinct, with the former displaying increased intrapopulation genetic similarity and differentiation. Analysis of shared ancestral genome segments highlights differences in the extent and timing of western breed introgression. Kinship analysis reveals 15 families, with the largest spanning all collection sites within the radioactive exclusion zone, reflecting migration of dogs between the power plant and Chernobyl City. This study presents the first characterization of a domestic species in Chernobyl, establishing their importance for genetic studies into the effects of exposure to long-term, low-dose ionizing radiation.


Subject(s)
Chernobyl Nuclear Accident , Disasters , Dogs , Animals , Environment , Environmental Pollution , Demography
5.
Pediatr Emerg Care ; 20(8): 525-7, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15295248

ABSTRACT

Toddlers commonly ingest coins. Studies of the evaluation and management of such ingestions have focused on the risk of complications from impaction in the esophagus. It is commonly assumed that coins that have passed through the esophagus present little or no risk for distal complications. We present the first report of cecal retention of a penny in a previously healthy 2 year old, ultimately resulting in surgical intervention.


Subject(s)
Appendicitis/diagnosis , Cecum , Foreign Bodies/diagnosis , Abdominal Pain/etiology , Appendectomy , Cecum/diagnostic imaging , Cecum/pathology , Cecum/surgery , Child, Preschool , Diagnosis, Differential , Fever/etiology , Foreign Bodies/diagnostic imaging , Foreign Bodies/surgery , Humans , Intestinal Mucosa/pathology , Laparotomy , Male , Radiography , Vomiting/etiology
SELECTION OF CITATIONS
SEARCH DETAIL