Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(13): e202317338, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38391056

ABSTRACT

For five years now, Merck KGaA, Darmstadt, Germany has hosted The Compound Challenge-a global retrosynthesis competition. When the event kicked off in 2018 on the occasion of the 350th anniversary of the company, no one could have predicted the path it would take-from a novel competition to a pivotal event within the synthetic chemistry community. But what makes the Compound Challenge tick and what drives its popularity? And, more importantly, what lessons can be taken from the Compound Challenge and applied to other challenges in scientific education and outreach? In this Viewpoint Article we will tell the story of the Compound Challenge, from its inception to its current status. Through examining feedback following each of its iterations, we begin to define what makes an open innovation challenge so compelling. It is our hope that educators, leaders, and innovators will be able to learn from our successes as well as our mistakes and apply these lessons to their future outreach activities.

2.
RSC Med Chem ; 14(6): 1002-1011, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37360399

ABSTRACT

Target 2035, an international federation of biomedical scientists from the public and private sectors, is leveraging 'open' principles to develop a pharmacological tool for every human protein. These tools are important reagents for scientists studying human health and disease and will facilitate the development of new medicines. It is therefore not surprising that pharmaceutical companies are joining Target 2035, contributing both knowledge and reagents to study novel proteins. Here, we present a brief progress update on Target 2035 and highlight some of industry's contributions.

3.
Nat Rev Chem ; 6(4): 287-295, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35783295

ABSTRACT

One aspirational goal of computational chemistry is to predict potent and drug-like binders for any protein, such that only those that bind are synthesized. In this Roadmap, we describe the launch of Critical Assessment of Computational Hit-finding Experiments (CACHE), a public benchmarking project to compare and improve small molecule hit-finding algorithms through cycles of prediction and experimental testing. Participants will predict small molecule binders for new and biologically relevant protein targets representing different prediction scenarios. Predicted compounds will be tested rigorously in an experimental hub, and all predicted binders as well as all experimental screening data, including the chemical structures of experimentally tested compounds, will be made publicly available, and not subject to any intellectual property restrictions. The ability of a range of computational approaches to find novel binders will be evaluated, compared, and openly published. CACHE will launch 3 new benchmarking exercises every year. The outcomes will be better prediction methods, new small molecule binders for target proteins of importance for fundamental biology or drug discovery, and a major technological step towards achieving the goal of Target 2035, a global initiative to identify pharmacological probes for all human proteins.

4.
RSC Med Chem ; 13(1): 13-21, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35211674

ABSTRACT

Twenty years after the publication of the first draft of the human genome, our knowledge of the human proteome is still fragmented. The challenge of translating the wealth of new knowledge from genomics into new medicines is that proteins, and not genes, are the primary executers of biological function. Therefore, much of how biology works in health and disease must be understood through the lens of protein function. Accordingly, a subset of human proteins has been at the heart of research interests of scientists over the centuries, and we have accumulated varying degrees of knowledge about approximately 65% of the human proteome. Nevertheless, a large proportion of proteins in the human proteome (∼35%) remains uncharacterized, and less than 5% of the human proteome has been successfully targeted for drug discovery. This highlights the profound disconnect between our abilities to obtain genetic information and subsequent development of effective medicines. Target 2035 is an international federation of biomedical scientists from the public and private sectors, which aims to address this gap by developing and applying new technologies to create by year 2035 chemogenomic libraries, chemical probes, and/or biological probes for the entire human proteome.

5.
Cell Rep ; 35(1): 108940, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33784499

ABSTRACT

SARS-CoV-2 has currently precipitated the COVID-19 global health crisis. We developed a medium-throughput drug-screening system and identified a small-molecule library of 34 of 430 protein kinase inhibitors that were capable of inhibiting the SARS-CoV-2 cytopathic effect in human epithelial cells. These drug inhibitors are in various stages of clinical trials. We detected key proteins involved in cellular signaling pathways mTOR-PI3K-AKT, ABL-BCR/MAPK, and DNA-damage response that are critical for SARS-CoV-2 infection. A drug-protein interaction-based secondary screen confirmed compounds, such as the ATR kinase inhibitor berzosertib and torin2 with anti-SARS-CoV-2 activity. Berzosertib exhibited potent antiviral activity against SARS-CoV-2 in multiple cell types and blocked replication at the post-entry step. Berzosertib inhibited replication of SARS-CoV-1 and the Middle East respiratory syndrome coronavirus (MERS-CoV) as well. Our study highlights key promising kinase inhibitors to constrain coronavirus replication as a host-directed therapy in the treatment of COVID-19 and beyond as well as provides an important mechanism of host-pathogen interactions.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , DNA Damage , Isoxazoles/pharmacology , Pyrazines/pharmacology , SARS-CoV-2/physiology , Virus Replication/drug effects , A549 Cells , Animals , COVID-19/metabolism , COVID-19/pathology , Chlorocebus aethiops , Drug Evaluation, Preclinical , HEK293 Cells , HeLa Cells , Humans , MAP Kinase Signaling System/drug effects , Middle East Respiratory Syndrome Coronavirus/metabolism , Vero Cells
6.
Bioconjug Chem ; 31(4): 1070-1076, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32134638

ABSTRACT

Site-specific bioconjugation technologies are frequently employed to generate homogeneous antibody-drug conjugates (ADCs) and are generally considered superior to stochastic approaches like lysine coupling. However, most of the technologies developed so far require undesired manipulation of the antibody sequence or its glycan structures. Herein, we report the successful engineering of microbial transglutaminase enabling efficient, site-specific conjugation of drug-linker constructs to position HC-Q295 of native, fully glycosylated IgG-type antibodies. ADCs generated via this approach demonstrate excellent stability in vitro as well as strong efficacy in vitro and in vivo. As it employs different drug-linker structures and several native antibodies, our study additionally proves the broad applicability of this approach.


Subject(s)
Immunoconjugates/metabolism , Protein Engineering , Transglutaminases/genetics , Transglutaminases/metabolism , Binding Sites , Streptomyces/enzymology , Transglutaminases/chemistry
7.
Trends Biotechnol ; 38(1): 1-4, 2020 01.
Article in English | MEDLINE | ID: mdl-31718803

ABSTRACT

Over the past 350 years, Merck has developed science and technology especially in health care, life sciences, and performance materials. To celebrate so many productive years, Merck conducted a special expanded anniversary edition of the Innovation Cup in combination with the scientific conference Curious2018 - Future Insight in Darmstadt, Germany.


Subject(s)
Drug Industry/organization & administration , Synthetic Biology , Awards and Prizes , Humans
8.
Angew Chem Int Ed Engl ; 58(4): 922-923, 2019 01 21.
Article in English | MEDLINE | ID: mdl-30411436

ABSTRACT

"… We will only be able to solve significant challenges with further progress in science and technology applied to the benefit of humanity. The Darmstadt Science Declaration is a global call to action to devote more resources to the advancement of science and technology to enable humanity to solve the challenges of today and to realize the dreams of a better tomorrow …" Read more in the Guest Editorial by Ulrich A. K. Betz.

9.
Sci Rep ; 6: 39291, 2016 12 16.
Article in English | MEDLINE | ID: mdl-27982100

ABSTRACT

Spontaneous isopeptide bond formation, a stabilizing posttranslational modification that can be found in gram-positive bacterial cell surface proteins, has previously been used to develop a peptide-peptide ligation technology that enables the polymerization of tagged-proteins catalyzed by SpyLigase. Here we adapted this technology to establish a novel modular antibody labeling approach which is based on isopeptide bond formation between two recognition peptides, SpyTag and KTag. Our labeling strategy allows the attachment of a reporting cargo of interest to an antibody scaffold by fusing it chemically to KTag, available via semi-automated solid-phase peptide synthesis (SPPS), while equipping the antibody with SpyTag. This strategy was successfully used to engineer site-specific antibody-drug conjugates (ADCs) that exhibit cytotoxicities in the subnanomolar range. Our approach may lead to a new class of antibody conjugates based on peptide-tags that have minimal effects on protein structure and function, thus expanding the toolbox of site-specific antibody conjugation.


Subject(s)
Antibodies/metabolism , Immunoconjugates/metabolism , Peptides/metabolism , Pharmaceutical Preparations/metabolism , Chemical Engineering , Technology, Pharmaceutical
10.
Bioconjug Chem ; 27(5): 1341-7, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27108993

ABSTRACT

Human growth hormone (hGH) plays an important role during human development and is also an approved therapeutic for the treatment of several diseases. However, one major drawback of hGH is its short circulating half-life requiring frequent administration, which is inconvenient and painful for the patients. Recent publications indicate that circularization greatly increases the stability of proteins due to their protection from exoproteolytic attack and a higher thermal stability of the circular form. Using sortase A, a transpeptidase isolated from Staphylococcus aureus, we developed a single step solid-phase circularization and purification procedure resulting in a circular version of hGH with improved properties. We could show that circular hGH binds to the recombinant hGH receptor with binding kinetics similar to those of linear hGH and that circularization does not alter the biological activity of hGH in vitro. Besides, circular hGH showed almost complete resistance toward exoproteolytic attack and slightly increased thermal stability which could possibly translate into an extended plasma half-life. The single step solid-phase circularization and purification procedure is in principle a generic process, which could also be applied for other proteins that meet the requirements for circularization.


Subject(s)
Human Growth Hormone/chemistry , Human Growth Hormone/isolation & purification , Amino Acid Sequence , Aminoacyltransferases/metabolism , Bacterial Proteins/metabolism , Cysteine Endopeptidases/metabolism , Humans , Kinetics , Models, Molecular , Protein Stability , Protein Structure, Secondary , Staphylococcus aureus/enzymology
11.
Angew Chem Int Ed Engl ; 54(45): 13420-4, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26367875

ABSTRACT

Based on the crystal structure of a natural protein substrate for microbial transglutaminase, an enzyme that catalyzes protein crosslinking, a recognition motif for site-specific conjugation was rationally designed. Conformationally locked by an intramolecular disulfide bond, this structural mimic of a native conjugation site ensured efficient conjugation of a reporter cargo to the therapeutic monoclonal antibody cetuximab without erosion of its binding properties.


Subject(s)
Cetuximab/chemistry , Transglutaminases/chemistry , Animals , CHO Cells , Cell Line, Tumor , Cetuximab/metabolism , Cricetulus , Disulfides/chemistry , Disulfides/metabolism , Humans , Models, Molecular , Protein Conformation , Transglutaminases/metabolism
13.
Cell ; 148(3): 447-57, 2012 Feb 03.
Article in English | MEDLINE | ID: mdl-22304915

ABSTRACT

Although it is believed that neural activation can affect immune responses, very little is known about the neuroimmune interactions involved, especially the regulators of immune traffic across the blood-brain barrier which occurs in neuroimmune diseases such as multiple sclerosis (MS). Using a mouse model of MS, experimental autoimmune encephalomyelitis, we show that autoreactive T cells access the central nervous system via the fifth lumbar spinal cord. This location is defined by IL-6 amplifier-dependent upregulation of the chemokine CCL20 in associated dorsal blood vessels, which in turn depends on gravity-induced activation of sensory neurons by the soleus muscle in the leg. Impairing soleus muscle contraction by tail suspension is sufficient to reduce localized chemokine expression and block entry of pathogenic T cells at the fifth lumbar cord, suggesting that regional neuroimmune interactions may offer therapeutic targets for a variety of neurological diseases.


Subject(s)
Blood-Brain Barrier , CD4-Positive T-Lymphocytes/cytology , Encephalomyelitis, Autoimmune, Experimental/immunology , Animals , Cell Movement , Chemokine CCL20/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Gravitation , Interleukin-6/immunology , Mice , Mice, Inbred C57BL , Multiple Sclerosis/immunology , Muscle, Skeletal/innervation , Neuroimmunomodulation , Spinal Cord/blood supply
14.
Drug Discov Today ; 16(13-14): 609-18, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21600301

ABSTRACT

Portfolio management in drug development has become a best practice in the pharmaceutical industry. By contrast, early on in the value chain - the discovery phase - portfolio management is still in its infancy. Nevertheless, owing to the attrition of R&D projects from phase to phase and the cost of capital involved, these early phases of drug discovery play a significant part for the overall cost of bringing new, innovative drugs to the market. This paper describes various approaches to manage a portfolio of projects in early-stage drug discovery and provides crucial factors that determine the success of such an approach.


Subject(s)
Drug Design , Drug Discovery/methods , Drug Industry/methods , Drug Discovery/economics , Drug Industry/economics , Efficiency, Organizational , Humans , Research/economics , Research Design
15.
Int Immunol ; 21(1): 73-80, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19050105

ABSTRACT

Infection with pathogens containing superantigens (Sags) can result in massive excessive CD4+ T cell activation and death in such conditions as toxic shock, food poisoning and autoimmune diseases. We here showed how enhancement of IL-6 signaling suppresses Sag-mediated activated CD4+ T cell death. Sag-induced CD4+ T cell death increased in IL-6 knockout (KO) mice, whereas it decreased in mice characterized by enhanced IL-6-gp130-STAT3 signaling. The serum concentration of IFN-gamma was inversely correlated with the magnitude of IL-6 signaling, and IFN-gamma deficiency inhibited Sag-induced activated CD4+ T cell death, suggesting that IL-6 suppresses CD4+ T cell death via IFN-gamma expression. Interestingly, depletion of activated CD8+ T cells inhibited Sag-mediated increases in IFN-gamma expression in IL-6 KO mice as well as the augmented CD4+ T cell death. The results demonstrate that IL-6-gp130-STAT3 signaling in activated CD8+ T cells contributes to Sag-induced CD4+ T cell death via IFN-gamma expression, highlighting this signaling axis in CD8+ T cells as a potential therapeutic target for Sag-related syndromes.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Interferon-gamma/metabolism , Interleukin-6/metabolism , Superantigens/immunology , Animals , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Interferon-gamma/blood , Interleukin-6/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction , Superantigens/metabolism
16.
Int Immunol ; 19(6): 695-702, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17493959

ABSTRACT

IL-17-producing Th (Th17) comprise a distinct lineage of pro-inflammatory Th that are major contributors to autoimmune diseases. Treatment with IL-6 and transforming growth factor beta (TGFbeta) induces naive CD4+ T cells to generate Th17, which also requires expression of the IL-6/TGFbeta target RORgammat. We reported that IL-6 transduces two signaling pathways via tyrosine redidues of the signal transducer gp130: one depends on signal transducers and activators of transcription (STAT)-3 activation and the other on Src homology region 2 domain-containing phosphatase 2 (SHP2)/Grb2 associated binder (Gab)/mitogen-activated protein kinase (MAPK) activation. Here, we showed that CD4+ T cells carrying a mutant gp130 that transduces the SHP2/Gab/MAPK pathway but not the STAT3-mediated one failed to develop into Th17, while CD4+ T cells whose mutant gp130 transduces the STAT3 signal only generated Th17, indicating that IL-6 acts directly on T cells through the tyrosine residues of gp130 required for STAT3 activation to promote the development of Th17. Moreover, we found that gp130-STAT3 pathway is essential for Th17 development and for the expression of RORgammat by using T cells specifically lacking gp130 and STAT3. Noteworthy is that the regulatory T cell (Treg) percentages and numbers were comparable between all mutant mice we tested in vivo, although we showed that IL-6-gp130-STAT3 pathway suppressed Treg development in vitro. Thus, we conclude that IL-6 acts directly to promote the development of Th17 by activating the T cell gp130-STAT3 pathway but has a minimum effect on Treg development at least in the steady state in vivo. Therefore, blockade of IL-6-gp130-STAT3 pathway in CD4+ T cells could be a good target for controlling unwanted Th17-mediated immune responses including autoimmune diseases.


Subject(s)
Cytokine Receptor gp130/physiology , Interleukin-17/metabolism , Interleukin-6/physiology , STAT3 Transcription Factor/physiology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Arthritis, Experimental/blood , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , Cell Count , Cell Differentiation/drug effects , Cell Differentiation/immunology , Cytokine Receptor gp130/genetics , Flow Cytometry , Forkhead Transcription Factors/metabolism , Interleukin-17/blood , Interleukin-17/immunology , Interleukin-6/genetics , Interleukin-6/pharmacology , Lymph Nodes/cytology , Lymph Nodes/immunology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Mice, Transgenic , Nuclear Receptor Subfamily 1, Group F, Member 3 , Receptors, Retinoic Acid/metabolism , Receptors, Thyroid Hormone/metabolism , STAT3 Transcription Factor/genetics , Signal Transduction/drug effects , Signal Transduction/immunology , Spleen/cytology , Spleen/immunology , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism
17.
J Neurosci ; 26(37): 9593-602, 2006 Sep 13.
Article in English | MEDLINE | ID: mdl-16971543

ABSTRACT

Hydrocephalus is a common and variegated pathology often emerging in newborn children after genotoxic insults during pregnancy (Hicks and D'Amato, 1980). Cre recombinase is known to have possible toxic effects that can compromise normal cell cycle and survival. Here we show, by using three independent nestin Cre transgenic lines, that high levels of Cre recombinase expression into the nucleus of neuronal progenitors can compromise normal brain development. The transgenics analyzed are the nestin Cre Balancer (Bal1) line, expressing the Cre recombinase with a nuclear localization signal, and two nestin CreER(T2) (Cre recombinase fused with a truncated estrogen receptor) mice lines with different levels of expression of a hybrid CreER(T2) recombinase that translocates into the nucleus after tamoxifen treatment. All homozygous Bal1 nestin Cre embryos displayed reduced neuronal proliferation, increased aneuploidy and cell death, as well as defects in ependymal lining and lamination of the cortex, leading to microencephaly and to a form of communicating hydrocephalus. An essentially overlapping phenotype was observed in the two nestin CreER(T2) transgenic lines after tamoxifen mediated-CreER(T2) translocation into the nucleus. Neither tamoxifen-treated wild-type nor nestin CreER(T2) oil-treated control mice displayed these defects. These results indicate that some forms of hydrocephalus may derive from a defect in neuronal precursors proliferation. Furthermore, they underscore the potential risks for developmental studies of high levels of nuclear Cre in neurogenic cells.


Subject(s)
Brain/abnormalities , Hydrocephalus/enzymology , Integrases/metabolism , Microcephaly/enzymology , Nervous System Malformations/enzymology , Stem Cells/enzymology , Aneuploidy , Animals , Biomarkers/metabolism , Brain/enzymology , Brain/physiopathology , Cell Death/physiology , Cell Differentiation/physiology , Cell Proliferation , Ependyma/abnormalities , Ependyma/metabolism , Ependyma/pathology , Gene Expression Regulation, Developmental/physiology , Hydrocephalus/genetics , Hydrocephalus/physiopathology , Integrases/genetics , Intermediate Filament Proteins/genetics , Intermediate Filament Proteins/metabolism , Mice , Mice, Transgenic , Microcephaly/genetics , Microcephaly/physiopathology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nervous System Malformations/genetics , Nervous System Malformations/physiopathology , Nestin , Neurons/enzymology , Nuclear Localization Signals/genetics , Nuclear Localization Signals/metabolism , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Selective Estrogen Receptor Modulators/pharmacology , Tamoxifen/pharmacology
18.
Drug Discov Today ; 10(15): 1057-63, 2005 Aug 01.
Article in English | MEDLINE | ID: mdl-16055022

ABSTRACT

The pharmaceutical industry can look back at a history of successful innovations. Although genomics technologies have provided drug discovery pipelines with a plethora of new potential drug targets, solid target validation is crucial to avoiding high attrition rates. Biomarkers for patient stratification and approaches for personalized medicine will further help to reduce the risk associated with new targets. To achieve an overall risk balance, portfolios have to be supplemented with precedented targets, me-too approaches and line extensions of existing drugs. However, capitalizing on genomics investments and working on unprecedented targets is essential for a continuous stream of innovative drugs.


Subject(s)
Drug Industry/economics , Drug Industry/trends , Genomics/economics , Genomics/trends , Efficiency
19.
Antimicrob Agents Chemother ; 46(6): 1766-72, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12019088

ABSTRACT

BAY 57-1293 belongs to a new class of antiviral compounds and inhibits replication of herpes simplex virus (HSV) type 1 and type 2 in the nanomolar range in vitro by abrogating the enzymatic activity of the viral primase-helicase complex. In various rodent models of HSV infection the antiviral activity of BAY 57-1293 in vivo was found to be superior compared to all compounds currently used to treat HSV infections. The compound shows profound antiviral activity in murine and rat lethal challenge models of disseminated herpes, in a murine zosteriform spread model of cutaneous disease, and in a murine ocular herpes model. It is active in parenteral, oral, and topical formulations. BAY 57-1293 continued to demonstrate efficacy when the onset of treatment was initiated after symptoms of herpetic disease were already apparent.


Subject(s)
Antiviral Agents/therapeutic use , DNA Helicases/antagonists & inhibitors , DNA Primase/antagonists & inhibitors , Herpes Simplex/drug therapy , Pyridines/therapeutic use , Simplexvirus , Thiazoles/therapeutic use , Animals , Antibodies, Viral/analysis , Antiviral Agents/pharmacology , Blotting, Southern , Drug Resistance, Microbial , Eye/pathology , Eye/virology , Female , Herpes Simplex/virology , Mice , Mice, Inbred BALB C , Mucous Membrane/pathology , Mucous Membrane/virology , Pyridines/pharmacology , Rats , Rats, Inbred Lew , Simplexvirus/pathogenicity , Skin/pathology , Skin/virology , Sulfonamides , Thiazoles/pharmacology
20.
Nat Med ; 8(4): 392-8, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11927946

ABSTRACT

The vast majority of the world population is infected with at least one member of the human herpesvirus family. Herpes simplex virus (HSV) infections are the cause of cold sores and genital herpes as well as life-threatening or sight-impairing disease mainly in immunocompromized patients, pregnant women and newborns. Since the milestone development in the late 1970s of acyclovir (Zovirax), a nucleosidic inhibitor of the herpes DNA polymerase, no new non-nucleosidic anti-herpes drugs have been introduced. Here we report new inhibitors of the HSV helicase-primase with potent in vitro anti-herpes activity, a novel mechanism of action, a low resistance rate and superior efficacy against HSV in animal models. BAY 57-1293 (N-[5-(aminosulfonyl)-4-methyl-1,3-thiazol-2-yl]-N-methyl-2-[4-(2-pyridinyl)phenyl]acetamide), a well-tolerated member of this class of compounds, significantly reduces time to healing, prevents rebound of disease after cessation of treatment and, most importantly, reduces frequency and severity of recurrent disease. Thus, this class of drugs has significant potential for the treatment of HSV disease in humans, including those resistant to current medications.


Subject(s)
Antiviral Agents/therapeutic use , DNA Helicases/antagonists & inhibitors , Enzyme Inhibitors/therapeutic use , Herpes Simplex/drug therapy , Pyridines/therapeutic use , Thiazoles/therapeutic use , Acyclovir/therapeutic use , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , DNA Primase , Drug Design , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Female , Guinea Pigs , Herpes Simplex/enzymology , Herpes Simplex/pathology , Humans , Infant, Newborn , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Pregnancy , Pyridines/chemistry , Pyridines/pharmacokinetics , Safety , Sulfonamides , Thiazoles/chemistry , Thiazoles/pharmacokinetics , Viral Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...