Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 160
Filter
1.
Nat Commun ; 14(1): 8343, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38102141

ABSTRACT

Viruses are the most abundant biological entities on Earth and play a significant role in the evolution of many organisms and ecosystems. In pathogenic protozoa, the presence of viruses has been linked to an increased risk of treatment failure and severe clinical outcome. Here, we studied the molecular epidemiology of the zoonotic disease cutaneous leishmaniasis in Peru and Bolivia through a joint evolutionary analysis of Leishmania braziliensis and their dsRNA Leishmania virus 1. We show that parasite populations circulate in tropical rainforests and are associated with single viral lineages that appear in low prevalence. In contrast, groups of hybrid parasites are geographically and ecologically more dispersed and associated with an increased prevalence, diversity and spread of viruses. Our results suggest that parasite gene flow and hybridization increased the frequency of parasite-virus symbioses, a process that may change the epidemiology of leishmaniasis in the region.


Subject(s)
Leishmania braziliensis , Leishmania , Leishmaniasis, Cutaneous , Humans , Ecosystem , Leishmaniasis, Cutaneous/parasitology , Leishmania braziliensis/genetics , Leishmania/genetics , Peru/epidemiology
2.
Front Immunol ; 14: 1257046, 2023.
Article in English | MEDLINE | ID: mdl-37885890

ABSTRACT

Background: Platelets are rapidly deployed to infection sites and respond to pathogenic molecules via pattern recognition receptors (TLR, NLRP). Dickkopf1 (DKK1) is a quintessential Wnt antagonist produced by a variety of cell types including platelets, endothelial cells, and is known to modulate pro-inflammatory responses in infectious diseases and cancer. Moreover, DKK1 is critical for forming leukocyte-platelet aggregates and induction of type 2 cell-mediated immune responses. Our previous publication showed activated platelets release DKK1 following Leishmania major recognition. Results: Here we probed the role of the key surface virulence glycoconjugate lipophosphoglycan (LPG), on DKK1 production using null mutants deficient in LPG synthesis (Δlpg1- and Δlpg2-). Leishmania-induced DKK1 production was reduced to control levels in the absence of LPG in both mutants and was restored upon re-expression of the cognate LPG1 or LPG2 genes. Furthermore, the formation of leukocyte-platelet aggregates was dependent on LPG. LPG mediated platelet activation and DKK1 production occurs through TLR1/2. Conclusion: Thus, LPG is a key virulence factor that induces DKK1 production from activated platelets, and the circulating DKK1 promotes Th2 cell polarization. This suggests that LPG-activated platelets can drive innate and adaptive immune responses to Leishmania infection.


Subject(s)
Leishmania major , Toll-Like Receptor 1/metabolism , Endothelial Cells , Immunity , Platelet Activation
3.
Nature ; 623(7985): 149-156, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37880367

ABSTRACT

Host factors that mediate Leishmania genetic exchange are not well defined. Here we demonstrate that natural IgM (IgMn)1-4 antibodies mediate parasite genetic exchange by inducing the transient formation of a spherical parasite clump that promotes parasite fusion and hybrid formation. We establish that IgMn from Leishmania-free animals binds to the surface of Leishmania parasites to induce significant changes in the expression of parasite transcripts and proteins. Leishmania binding to IgMn is partially lost after glycosidase treatment, although parasite surface phosphoglycans, including lipophosphoglycan, are not required for IgMn-induced parasite clumping. Notably, the transient formation of parasite clumps is essential for Leishmania hybridization in vitro. In vivo, we observed a 12-fold increase in hybrid formation in sand flies provided a second blood meal containing IgMn compared with controls. Furthermore, the generation of recombinant progeny from mating hybrids and parental lines were only observed in sand flies provided with IgMn. Both in vitro and in vivo IgM-induced Leishmania crosses resulted in full genome hybrids that show equal patterns of biparental contribution. Leishmania co-option of a host natural antibody to facilitate mating in the insect vector establishes a new paradigm of parasite-host-vector interdependence that contributes to parasite diversity and fitness by promoting genetic exchange.


Subject(s)
Host-Parasite Interactions , Immunoglobulin M , Leishmania , Psychodidae , Reproduction , Animals , Hybridization, Genetic , Immunoglobulin M/immunology , Leishmania/genetics , Leishmania/immunology , Psychodidae/immunology , Psychodidae/parasitology , Reproduction/genetics , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology , Gene Expression Regulation , Glycoside Hydrolases/metabolism
4.
J Biol Chem ; 299(6): 104745, 2023 06.
Article in English | MEDLINE | ID: mdl-37094699

ABSTRACT

The accessibility of sterols in mammalian cells to exogenous sterol-binding agents has been well-described previously, but sterol accessibility in distantly related protozoa is unclear. The human pathogen Leishmania major uses sterols and sphingolipids distinct from those used in mammals. Sterols in mammalian cells can be sheltered from sterol-binding agents by membrane components, including sphingolipids, but the surface exposure of ergosterol in Leishmania remains unknown. Here, we used flow cytometry to test the ability of the L. major sphingolipids inositol phosphorylceramide (IPC) and ceramide to shelter ergosterol by preventing binding of the sterol-specific toxins streptolysin O and perfringolysin O and subsequent cytotoxicity. In contrast to mammalian systems, we found that Leishmania sphingolipids did not preclude toxin binding to sterols in the membrane. However, we show that IPC reduced cytotoxicity and that ceramide reduced perfringolysin O- but not streptolysin O-mediated cytotoxicity in cells. Furthermore, we demonstrate ceramide sensing was controlled by the toxin L3 loop, and that ceramide was sufficient to protect L. major promastigotes from the anti-leishmaniasis drug amphotericin B. Based on these results, we propose a mechanism whereby pore-forming toxins engage additional lipids like ceramide to determine the optimal environment to sustain pore formation. Thus, L. major could serve as a genetically tractable protozoan model organism for understanding toxin-membrane interactions.


Subject(s)
Cell Membrane , Ceramides , Leishmania major , Sphingolipids , Ceramides/chemistry , Ergosterol/chemistry , Sphingolipids/chemistry , Sterols/chemistry , Cell Membrane/chemistry
5.
bioRxiv ; 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36993291

ABSTRACT

Viruses are the most abundant biological entities on Earth and play a significant role in the evolution of many organisms and ecosystems. In pathogenic protozoa, the presence of endosymbiotic viruses has been linked to an increased risk of treatment failure and severe clinical outcome. Here, we studied the molecular epidemiology of the zoonotic disease cutaneous leishmaniasis in Peru and Bolivia through a joint evolutionary analysis of Leishmania braziliensis parasites and their endosymbiotic Leishmania RNA virus. We show that parasite populations circulate in isolated pockets of suitable habitat and are associated with single viral lineages that appear in low prevalence. In contrast, groups of hybrid parasites were geographically and ecologically dispersed, and commonly infected from a pool of genetically diverse viruses. Our results suggest that parasite hybridization, likely due to increased human migration and ecological perturbations, increased the frequency of endosymbiotic interactions known to play a key role in disease severity.

6.
Front Microbiol ; 13: 1059115, 2022.
Article in English | MEDLINE | ID: mdl-36523834

ABSTRACT

Introduction: Trypanosoma cruzi is the protozoan parasite causing Chagas disease, a Neglected Tropical Disease that affects 8 million people and causes 12,000 deaths per year, primarily because of cardiac pathology. Effective vaccination for T. cruzi remains an elusive goal. The use of a live vaccine vector, especially one that mimics the pathogen target, may be superior to the use of recombinant protein or DNA vaccine formulations. Methods: We generated recombinant Leishmania major, a related trypanosomatid parasite, as a vaccine vehicle to express the immunogenic T. cruzi trans-sialidase (TS) antigen. The induction of T cell and antibody responses, as well as T. cruzi protective immunity generated by these vaccines were assessed in vivo. Results: We demonstrate that mice inoculated with these recombinant TS-expressing L. major parasites mount T cell and antibody responses directed against TS and are protected against future T. cruzi infection. We also show that the partially attenuated dhfr-ts- CC1 L. major strain, previously found to induce protective immunity to virulent L. major infection without causing pathology, can also be engineered to express the TS antigen. This latter recombinant may represent a safe and effective option to explore for ultimate use in humans. Discussion: Altogether, these data indicate that L. major can stably express a T. cruzi antigen and induce T. cruzi-specific protective immunity, warranting further investigation of attenuated Leishmania parasites as vaccine.

7.
Microbiol Spectr ; 10(6): e0305222, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36394313

ABSTRACT

The trypanosomatid protozoan parasite Leishmania has a significant impact on human health globally. Understanding the pathways associated with virulence within this significant pathogen is critical for identifying novel vaccination and chemotherapy targets. Within this study we leverage an ultradeep proteomic approach to improve our understanding of two virulence-associated genes in Leishmania, encoding the Golgi mannose/arabinopyranose/fucose nucleotide-sugar transporter (LPG2) and the mitochondrial fucosyltransferase (FUT1). Using deep peptide fractionation followed by complementary fragmentation approaches with higher-energy collisional dissociation (HCD) and electron transfer dissociation (ETD) allowed the identification of over 6,500 proteins, nearly doubling the experimentally known Leishmania major proteome. This deep proteomic analysis revealed significant quantitative differences in both Δlpg2- and Δfut1s mutants with FUT1-dependent changes linked to marked alterations within mitochondrion-associated proteins, while LPG2-dependent changes impacted many pathways, including the secretory pathway. While the FUT1 enzyme has been shown to fucosylate peptides in vitro, no evidence for protein fucosylation was identified within our ultradeep analysis, nor did we observe fucosylated glycans within Leishmania glycopeptides isolated using hydrophilic interaction liquid chromatography (HILIC) enrichment. This work provides a critical resource for the community on the observable Leishmania proteome as well as highlighting phenotypic changes associated with LPG2 or FUT1, ablation of which may guide the development of future therapeutics. IMPORTANCE Leishmania is a widespread trypanosomatid protozoan parasite of humans, with ~12 million cases currently, ranging from mild to fatal, and hundreds of millions asymptomatically infected. This work advances knowledge of the experimental proteome by nearly 2-fold, to more than 6,500 proteins and thus provides a great resource to investigators seeking to decode how this parasite is transmitted and causes disease and to identify new targets for therapeutic intervention. The ultradeep proteomics approach identified potential proteins underlying the "persistence-without-pathology" phenotype of mutants with deletion of the Golgi nucleotide transporter LPG2, showing many alterations and several candidates. Studies of a rare mutant with deletion of the mitochondrial fucosyltransferase FUT1 revealed changes underlying its strong mitochondrial dysfunction but did not reveal examples of fucosylation of either peptides or N-glycans. This suggests that this vital protein's elusive target(s) may be more complex than the methods used could detect or that this target may not be a protein but perhaps another glycoconjugate or glycolipid.


Subject(s)
Leishmania major , Protozoan Proteins , Humans , Fucose , Fucosyltransferases/genetics , Leishmania major/genetics , Mannose , Polysaccharides , Proteome , Proteomics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
8.
mBio ; 13(6): e0285822, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36394334

ABSTRACT

Genetic exchange between different Leishmania strains in the sand fly vector has been experimentally demonstrated and is supported by population genetic studies. In nature, opportunities for Leishmania interstrain mating are restricted to flies biting multiply infected hosts or through multiple bites of different hosts. In contrast, self-mating could occur in any infected sand fly. By crossing two recombinant lines derived from the same Leishmania major strain, each expressing a different drug-resistance marker, self-hybridization in L. major was confirmed in a natural sand fly vector, Phlebotomus duboscqi, and in frequencies comparable to interstrain crosses. We provide the first high resolution, whole-genome sequencing analysis of large numbers of selfing progeny, their parents, and parental subclones. Genetic exchange consistent with classical meiosis is supported by the biallelic inheritance of the rare homozygous single nucleotide polymorphisms (SNPs) that arose by mutation during the generation of the parental clones. In contrast, heterozygous SNPs largely failed to be transmitted in Mendelian ratios for reasons not understood. SNPs that were heterozygous in both parents, however, recombined to produce homozygous alleles in some hybrids. For trisomic chromosomes present in both parents, transmittal to the progeny was only altered by self-hybridization, involving a gain or loss of somy in frequencies predicted by a meiotic process. Whole-genome polyploidization was also observed in the selfing progeny. Thus, self-hybridization in Leishmania, with its potential to occur in any infected sand fly, may be an important source of karyotype variation, loss of heterozygosity, and functional diversity. IMPORTANCE Leishmania are parasitic protozoa that cause a wide spectrum of diseases collectively known as the leishmaniases. Sexual reproduction in Leishmania has been proposed as an important source of genetic diversity and has been formally demonstrated to occur inside the sand fly vector midgut. Nevertheless, in the wild, opportunities for genetic exchange between different Leishmania species or strains are restricted by the capacity of different Leishmania strains to colonize the same sand fly. In this work, we report the first high resolution, whole-genome sequence analysis of intraclonal genetic exchange as a type of self-mating in Leishmania. Our data reveal that self-hybridization can occur with comparable frequency as interstrain mating under experimental lab conditions, leading to important genomic alterations that can potentially take place within every naturally infected sand fly.


Subject(s)
Leishmania major , Phlebotomus , Psychodidae , Animals , Leishmania major/genetics , Phlebotomus/parasitology , Psychodidae/parasitology , Reproduction , Mutation
9.
PLoS Negl Trop Dis ; 16(10): e0010893, 2022 10.
Article in English | MEDLINE | ID: mdl-36302046

ABSTRACT

Immediately following their deposition into the mammalian host by an infected sand fly vector, Leishmania parasites encounter and are engulfed by a variety of cell types. From there, parasites may transit to other cell types, primarily macrophages or dendritic cells, where they replicate and induce pathology. During this time, Leishmania cells undergo a dramatic transformation from the motile non-replicating metacyclic stage to the non-motile replicative amastigote stage, a differentiative process that can be termed amastigogenesis. To follow this at the single cell level, we identified a suite of experimental 'landmarks' delineating different stages of amastigogenesis qualitatively or quantitatively, including new uses of amastigote-specific markers that showed interesting cellular localizations at the anterior or posterior ends. We compared amastigogenesis in synchronous infections of peritoneal and bone-marrow derived macrophages (PEM, BMM) or dendritic cells (BMDC). Overall, the marker suite expression showed an orderly transition post-infection with similar kinetics between host cell types, with the emergence of several amastigote traits within 12 hours, followed by parasite replication after 24 hours, with parasites in BMM or BMDC initiating DNA replication more slowly. Lipophosphoglycan (LPG) is a Leishmania virulence factor that facilitates metacyclic establishment in host cells but declines in amastigotes. Whereas LPG expression was lost by parasites within PEM by 48 hours, >40% of the parasites infecting BMM or BMDC retained metacyclic-level LPG expression at 72 hr. Thus L. major may prolong LPG expression in different intracellular environments, thereby extending its efficacy in promoting infectivity in situ and during cell-to-cell transfer of parasites expressing this key virulence factor.


Subject(s)
Leishmania major , Animals , Virulence Factors , Single-Cell Analysis , Glycosphingolipids , Mammals
10.
J Biol Chem ; 298(11): 102522, 2022 11.
Article in English | MEDLINE | ID: mdl-36162499

ABSTRACT

Many pathogens synthesize inositol phosphorylceramide (IPC) as the major sphingolipid (SL), differing from the mammalian host where sphingomyelin (SM) or more complex SLs predominate. The divergence between IPC synthase and mammalian SL synthases has prompted interest as a potential drug target. However, in the trypanosomatid protozoan Leishmania, cultured insect stage promastigotes lack de novo SL synthesis (Δspt2-) and SLs survive and remain virulent, as infective amastigotes salvage host SLs and continue to produce IPC. To further understand the role of IPC, we generated null IPCS mutants in Leishmania major (Δipcs-). Unexpectedly and unlike fungi where IPCS is essential, Δipcs- was remarkably normal in culture and highly virulent in mouse infections. Both IPCS activity and IPC were absent in Δipcs- promastigotes and amastigotes, arguing against an alternative route of IPC synthesis. Notably, salvaged mammalian SM was highly abundant in purified amastigotes from both WT and Δipcs-, and salvaged SLs could be further metabolized into IPC. SM was about 7-fold more abundant than IPC in WT amastigotes, establishing that SM is the dominant amastigote SL, thereby rendering IPC partially redundant. These data suggest that SM salvage likely plays key roles in the survival and virulence of both WT and Δipcs- parasites in the infected host, confirmation of which will require the development of methods or mutants deficient in host SL/SM uptake in the future. Our findings call into question the suitability of IPCS as a target for chemotherapy, instead suggesting that approaches targeting SM/SL uptake or catabolism may warrant further emphasis.


Subject(s)
Hexosyltransferases , Leishmania major , Leishmaniasis, Cutaneous , Sphingomyelins , Animals , Mice , Leishmania major/enzymology , Leishmania major/genetics , Sphingomyelins/metabolism , Virulence , Glycosphingolipids/metabolism , Protozoan Proteins/genetics , Hexosyltransferases/genetics , Leishmaniasis, Cutaneous/parasitology , Sequence Deletion
11.
Pathogens ; 11(8)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36015053

ABSTRACT

Eukaryotes use histone variants and post-translation modifications (PTMs), as well as DNA base modifications, to regulate DNA replication/repair, chromosome condensation, and gene expression. Despite the unusual organization of their protein-coding genes into large polycistronic transcription units (PTUs), trypanosomatid parasites also employ a "histone code" to control these processes, but the details of this epigenetic code are poorly understood. Here, we present the results of experiments designed to elucidate the distribution of histone variants and PTMs over the chromatin landscape of Leishmania tarentolae. These experiments show that two histone variants (H2A.Z and H2B.V) and three histone H3 PTMs (H3K4me3, H3K16ac, and H3K76me3) are enriched at transcription start sites (TSSs); while a histone variant (H3.V) and the trypanosomatid-specific hyper-modified DNA base J are located at transcription termination sites (TTSs). Reduced nucleosome density was observed at all TTSs and TSSs for RNA genes transcribed by RNA polymerases I (RNAPI) or RNAPIII; as well as (to a lesser extent) at TSSs for the PTUs transcribed by RNAPII. Several PTMs (H3K4me3, H3K16ac H3K20me2 and H3K36me3) and base J were enriched at centromeres, while H3K50ac was specifically associated with the periphery of these centromeric sequences. These findings significantly expand our knowledge of the epigenetic markers associated with transcription, DNA replication and/or chromosome segregation in these early diverging eukaryotes and will hopefully lay the groundwork for future studies to elucidate how they control these fundamental processes.

12.
Front Cell Infect Microbiol ; 12: 944819, 2022.
Article in English | MEDLINE | ID: mdl-36034693

ABSTRACT

Inducible nitric oxide synthase (iNOS) is essential to the production of nitric oxide (NO), an efficient effector molecule against intracellular human pathogens such as Leishmania protozoan parasites. Some strains of Leishmania are known to bear a viral endosymbiont termed Leishmania RNA virus 1 (LRV1). Recognition of LRV1 by the innate immune sensor Toll-like receptor-3 (TLR3) leads to conditions worsening the disease severity in mice. This process is governed by type I interferon (type I IFNs) arising downstream of TLR3 stimulation and favoring the formation of secondary metastatic lesions. The formation of these lesions is mediated by the inflammatory cytokine IL-17A and occurs in the absence, or low level of, protective cytokine IFN-γ. Here, we described that the presence of LRV1 led to the initial expression of iNOS and low production of NO that failed to control infection. We subsequently showed that LRV1-triggered type I IFN was essential but insufficient to induce robust iNOS induction, which requires strong activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Leishmania guyanensis carrying LRV1 (LgyLRV1+) parasites mitigated strong iNOS production by limiting NF-kB activation via the induction of tumor necrosis factor-alpha-induced protein 3 (TNFAIP3), also known as A20. Moreover, our data suggested that production of LRV1-induced iNOS could be correlated with parasite dissemination and metastasis via elevated secretion of IL-17A in the draining lymph nodes. Our findings support an additional strategy by which LRV1-bearing Leishmania guyanensis evaded killing by nitric oxide and suggest that low levels of LRV1-induced NO might contribute to parasite metastasis.


Subject(s)
Leishmania guyanensis , Leishmania , Nitric Oxide Synthase Type II , Animals , Cytokines , Humans , Interleukin-17 , Leishmania guyanensis/virology , Leishmaniavirus , Mice , NF-kappa B , Nitric Oxide , Nitric Oxide Synthase Type II/metabolism , Toll-Like Receptor 3
13.
Front Cell Infect Microbiol ; 12: 941860, 2022.
Article in English | MEDLINE | ID: mdl-36034709

ABSTRACT

The lymphatic system plays a crucial role in mounting immune response against intracellular pathogens, and recent studies have documented its role in facilitating tumor dissemination linked largely with cancer cells. However, in mucocutaneous leishmaniasis (MCL) caused by Leishmania Viannia subgenus showing infectious metastasis and resulting in severe distant secondary lesions, the route of escape of these parasites to secondary sites has not yet been investigated in detail. Our results demonstrated that when infection was associated with inflammation and additionally exacerbated by the presence of dsRNA viral endosymbiont (LRV1), lymphatic vessels could serve as efficient routes for infected cells to egress from the primary site and colonize distant organs. We challenged this hypothesis by using the intracellular Leishmania protozoan parasites Leishmania guyanensis (Lgy) associated with or without a dsRNA viral endosymbiont, exacerbating the infection and responsible for a strong inflammatory response, and favoring metastasis of the infection. We analyzed possible cargo cells and the routes of dissemination through flow cytometry, histological analysis, and in vivo imaging in our metastatic model to show that parasites disseminated not only intracellularly but also as free extracellular parasites using migrating immune cells, lymph nodes (LNs), and lymph vessels, and followed intricate connections of draining and non-draining lymph node to finally end up in the blood and in distant skin, causing new lesions.


Subject(s)
Leishmania braziliensis , Leishmania , Leishmaniasis, Mucocutaneous , Neoplasms , Humans , Lymphatic System
14.
Genes (Basel) ; 14(1)2022 12 28.
Article in English | MEDLINE | ID: mdl-36672832

ABSTRACT

RNA interference (RNAi) is a powerful tool whose efficacy against a broad range of targets enables functional genetic tests individually or systematically. However, the RNAi pathway has been lost in evolution by a variety of eukaryotes including most Leishmania sp. RNAi was retained in species of the Leishmania subgenus Viannia, and here we describe the development, optimization, and application of RNAi tools to the study of L. (Viannia) braziliensis (Lbr). We developed vectors facilitating generation of long-hairpin or "stem-loop" (StL) RNAi knockdown constructs, using GatewayTM site-specific recombinase technology. A survey of applications of RNAi in L. braziliensis included genes interspersed within multigene tandem arrays such as quinonoid dihydropteridine reductase (QDPR), a potential target or modulator of antifolate sensitivity. Other tests include genes involved in cell differentiation and amastigote proliferation (A600), and essential genes of the intraflagellar transport (IFT) pathway. We tested a range of stem lengths targeting the L. braziliensis hypoxanthine-guanine phosphoribosyl transferase (HGPRT) and reporter firefly luciferase (LUC) genes and found that the efficacy of RNAi increased with stem length, and fell off greatly below about 128 nt. We used the StL length dependency to establish a useful 'hypomorphic' approach not possible with other gene ablation strategies, with shorter IFT140 stems yielding viable cells with compromised flagellar morphology. We showed that co-selection for RNAi against adenine phosphoryl transferase (APRT1) using 4-aminopyrazolpyrimidine (APP) could increase the efficacy of RNAi against reporter constructs, a finding that may facilitate improvements in future work. Thus, for many genes, RNAi provides a useful tool for studying Leishmania gene function with some unique advantages.


Subject(s)
Leishmania braziliensis , Leishmania , Leishmania/genetics , RNA Interference , Leishmania braziliensis/genetics , Phenotype
15.
Nucleic Acids Res ; 49(22): 12706-12715, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34791430

ABSTRACT

Endogenous retroviruses (ERVs) are subject to transcriptional repression in adult tissues, in part to prevent autoimmune responses. However, little is known about the epigenetic silencing of ERV expression. Here, we describe a new role for inhibitor of growth family member 3 (ING3), to add to an emerging group of ERV transcriptional regulators. Our results show that ING3 binds to several ERV promoters (for instance MER21C) and establishes an EZH2-mediated H3K27 trimethylation modification. Loss of ING3 leads to decreases of H3K27 trimethylation enrichment at ERVs, induction of MDA5-MAVS-interferon signaling, and functional inhibition of several virus infections. These data demonstrate an important new function of ING3 in ERV silencing and contributing to innate immune regulation in somatic cells.


Subject(s)
Endogenous Retroviruses , Gene Silencing , Homeodomain Proteins/physiology , Immunity, Innate/genetics , Tumor Suppressor Proteins/physiology , CRISPR-Cas Systems , HT29 Cells , HeLa Cells , Histone Code , Homeodomain Proteins/metabolism , Humans , Tumor Suppressor Proteins/metabolism
16.
PLoS Pathog ; 17(9): e1008768, 2021 09.
Article in English | MEDLINE | ID: mdl-34559857

ABSTRACT

Trypanosome Lytic Factor (TLF) is a primate-specific high-density lipoprotein (HDL) complex that, through the cation channel-forming protein apolipoprotein L-1 (APOL1), provides innate immunity to select kinetoplastid parasites. The immunoprotective effects of TLF have been extensively investigated in the context of its interaction with the extracellular protozoan Trypanosoma brucei brucei, to which it confers sterile immunity. We previously showed that TLF could act against an intracellular pathogen Leishmania, and here we dissected the role of TLF and its synergy with host-immune cells. Leishmania major is transmitted by Phlebotomine sand flies, which deposit the parasite intradermally into mammalian hosts, where neutrophils are the predominant phagocytes recruited to the site of infection. Once in the host, the parasites are phagocytosed and shed their surface glycoconjugates during differentiation to the mammalian-resident amastigote stage. Our data show that mice producing TLF have reduced parasite burdens when infected intradermally with metacyclic promastigotes of L. major, the infective, fly-transmitted stage. This TLF-mediated reduction in parasite burden was lost in neutrophil-depleted mice, suggesting that early recruitment of neutrophils is required for TLF-mediated killing of L. major. In vitro we find that only metacyclic promastigotes co-incubated with TLF in an acidic milieu were lysed. However, amastigotes were not killed by TLF at any pH. These findings correlated with binding experiments, revealing that labeled TLF binds specifically to the surface of metacyclic promastigotes, but not to amastigotes. Metacyclic promastigotes of L. major deficient in the synthesis of surface glycoconjugates LPG and/or PPG (lpg1- and lpg5A-/lpg5B- respectively) whose absence mimics the amastigote surface, were resistant to TLF-mediated lysis. We propose that TLF binds to the outer surface glycoconjugates of metacyclic promastigotes, whereupon it kills the parasite in the acidic phagosome of phagocytes. We hypothesize that resistance to TLF requires shedding of the surface glycoconjugates, which occurs several hours after phagocytosis by immune cells, creating a relatively short-lived but effective window for TLF to act against Leishmania.


Subject(s)
Host-Parasite Interactions/physiology , Immunity, Innate , Leishmaniasis, Cutaneous , Lipoproteins, HDL/metabolism , Animals , Humans , Leishmania major , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/metabolism , Leishmaniasis, Cutaneous/pathology , Lipoproteins, HDL/immunology , Mice
17.
Microbiol Resour Announc ; 10(35): e0054521, 2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34472979

ABSTRACT

We report the high-quality draft assemblies and gene annotations for 13 species and/or strains of the protozoan parasite genera Leishmania, Endotrypanum, and Crithidia, which span the phylogenetic diversity of the subfamily Leishmaniinae within the kinetoplastid order of the phylum Euglenazoa. These resources will support studies on the origins of parasitism.

18.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Article in English | MEDLINE | ID: mdl-34385330

ABSTRACT

Glycoconjugates play major roles in the infectious cycle of the trypanosomatid parasite Leishmania While GDP-Fucose synthesis is essential, fucosylated glycoconjugates have not been reported in Leishmania major [H. Guo et al., J. Biol. Chem. 292, 10696-10708 (2017)]. Four predicted fucosyltransferases appear conventionally targeted to the secretory pathway; SCA1/2 play a role in side-chain modifications of lipophosphoglycan, while gene deletion studies here showed that FUT2 and SCAL were not essential. Unlike most eukaryotic glycosyltransferases, the predicted α 1-2 fucosyltransferase encoded by FUT1 localized to the mitochondrion. A quantitative "plasmid segregation" assay, expressing FUT1 from the multicopy episomal pXNG vector in a chromosomal null ∆fut1- background, established that FUT1 is essential. Similarly, "plasmid shuffling" confirmed that both enzymatic activity and mitochondrial localization were required for viability, comparing import-blocked or catalytically inactive enzymes, respectively. Enzymatic assays of tagged proteins expressed in vivo or of purified recombinant FUT1 showed it had a broad fucosyltransferase activity including glycan and peptide substrates. Unexpectedly, a single rare ∆fut1- segregant (∆fut1s ) was obtained in rich media, which showed severe growth defects accompanied by mitochondrial dysfunction and loss, all of which were restored upon FUT1 reexpression. Thus, FUT1 along with the similar Trypanosoma brucei enzyme TbFUT1 [G. Bandini et al., bioRxiv, https://www.biorxiv.org/content/10.1101/726117v2 (2021)] joins the eukaryotic O-GlcNAc transferase isoform as one of the few glycosyltransferases acting within the mitochondrion. Trypanosomatid mitochondrial FUT1s may offer a facile system for probing mitochondrial glycosylation in a simple setting, and their essentiality for normal growth and mitochondrial function renders it an attractive target for chemotherapy of these serious human pathogens.


Subject(s)
Fucosyltransferases/metabolism , Gene Expression Regulation, Enzymologic/physiology , Leishmania major/metabolism , Mitochondria/enzymology , Protozoan Proteins/metabolism , Amino Acid Sequence , Culture Media , Fucosyltransferases/genetics , Mutation , Plasmids , Protein Transport , Protozoan Proteins/genetics , Galactoside 2-alpha-L-fucosyltransferase
19.
PLoS Pathog ; 17(3): e1009422, 2021 03.
Article in English | MEDLINE | ID: mdl-33765083

ABSTRACT

The oxidative burst generated by the host immune system can restrict intracellular parasite entry and growth. While this burst leads to the induction of antioxidative enzymes, the molecular mechanisms and the consequences of this counter-response on the life of intracellular human parasites are largely unknown. The transcription factor NF-E2-related factor (NRF2) could be a key mediator of antioxidant signaling during infection due to the entry of parasites. Here, we showed that NRF2 was strongly upregulated in infection with the human Leishmania protozoan parasites, its activation was dependent on a NADPH oxidase 2 (NOX2) and SRC family of protein tyrosine kinases (SFKs) signaling pathway and it reprogrammed host cell metabolism. In inflammatory leishmaniasis caused by a viral endosymbiont inducing TNF-α in chronic leishmaniasis, NRF2 activation promoted parasite persistence but limited TNF-α production and tissue destruction. These data provided evidence of the dual role of NRF2 in protecting both the invading pathogen from reactive oxygen species and the host from an excess of the TNF-α destructive pro-inflammatory cytokine.


Subject(s)
Host-Parasite Interactions/physiology , Leishmania/metabolism , Leishmaniasis/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress/physiology , Animals , Inflammation/immunology , Inflammation/metabolism , Leishmania/immunology , Leishmaniasis/immunology , Mice , NF-E2-Related Factor 2/immunology , Signal Transduction/immunology
20.
Genes (Basel) ; 12(2)2021 01 26.
Article in English | MEDLINE | ID: mdl-33530584

ABSTRACT

A cryptic sexual reproductive cycle in Leishmania has been inferred through population genetic studies revealing the presence of hybrid genotypes in natural isolates, with attempts made to decipher sexual strategies by studying complex chromosomal inheritance patterns. A more informative approach is to study the products of controlled, laboratory-based experiments where known strains or species are crossed in the sand fly vector to generate hybrid progeny. These hybrids can be subsequently studied through high resolution sequencing technologies and software suites such as PAINT that disclose inheritance patterns including ploidies, parental chromosome contributions and recombinations, all of which can inform the sexual strategy. In this work, we discuss the computational methods in PAINT that can be used to interpret the sexual strategies adopted specifically by aneuploid organisms and summarize how PAINT has been applied to the analysis of experimental hybrids to reveal meiosis-like sexual recombination in Leishmania.


Subject(s)
Aneuploidy , Genome , Leishmania/physiology , Models, Biological , Reproduction , Chromosome Mapping , Computational Biology , Databases, Genetic , Hybridization, Genetic , Meiosis , Ploidies , Polymorphism, Single Nucleotide , Recombination, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...