Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
Add more filters










Publication year range
1.
Antimicrob Agents Chemother ; : e0172223, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771032

ABSTRACT

Chronic wound infections can be difficult to treat and may lead to impaired healing and worsened patient outcomes. Novel treatment strategies are needed. This study evaluated the effects of intermittently produced hydrogen peroxide (H2O2) and hypochlorous acid (HOCl), generated via an electrochemical bandage (e-bandage), against methicillin-resistant Staphylococcus aureus biofilms in an agar membrane biofilm model. By changing the working electrode potential, the e-bandage generated either HOCl (1.5 VAg/AgCl) or H2O2 (-0.6 VAg/AgCl). The degree of biocidal activity of intermittent treatment with HOCl and H2O2 correlated with HOCl treatment time; HOCl treatment durations of 0, 1.5, 3, 4.5, and 6 hours (with the rest of the 6-hour total treatment time devoted to H2O2 generation) resulted in mean biofilm reductions of 1.36 ± 0.2, 2.22 ± 0.16, 3.46 ± 0.38, 4.63 ± 0.74, and 7.66 ± 0.5 log CFU/cm2, respectively, vs. non-polarized controls, respectively. However, application of H2O2 immediately after HOCl treatment was detrimental to biofilm removal. For example, 3 hours HOCl treatment followed by 3 hours H2O2 resulted in a 1.90 ± 0.84 log CFU/cm2 lower mean biofilm reduction than 3 hours HOCl treatment followed by 3 hours non-polarization. HOCl generated over 3 hours exhibited biocidal activity for at least 7.5 hours after e-bandage operation ceased; 3 hours of HOCl generation followed by 7.5 hours of non-polarization resulted in a biofilm cell reduction of 7.92 ± 0.12 log CFU/cm2 vs. non-polarized controls. Finally, intermittent treatment with HOCl (i.e., interspersed with periods of e-bandage non-polarization) for various intervals showed similar effects (approximately 6 log CFU/cm2 reduction vs. non-polarized control) to continuous treatment with HOCl for 3 hours, followed by 3 hours of non-polarization. These findings suggest that timing and sequencing of HOCl and H2O2 treatments are crucial for maximizing biofilm control when using an e-bandage strategy.

2.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38585771

ABSTRACT

Electrochemical bandages (e-bandages) can be applied to biofilm-infected wounds to generate reactive oxygen species, such as hypochlorous acid (HOCl) or hydrogen peroxide (H 2 O 2 ). The e-bandage-generated HOCl or H 2 O 2 kills biofilms in vitro and in infected wounds on mice. The HOCl-generating e-bandage is more active against biofilms in vitro , although this distinction is less apparent in vivo . The H 2 O 2 -generating e-bandage, more than the HOCl-generating e-bandage, is associated with improved healing of infected wounds. A strategy in which H 2 O 2 and HOCl are generated alternately-for dual action-was explored. The goal was to develop a programmable multimodal wearable potentiostat (PMWP) that could be programmed to generate HOCl or H 2 O 2 , as needed. An ultralow-power microcontroller unit managed operation of the PMWP. The system was operated with a 260-mAh capacity coin battery and weighed 4.6 grams, making it suitable for small animal experiments or human use. The overall cost of a single wearable potentiostat was $6.50 (USD). The device was verified using established electrochemical systems and functioned comparably to a commercial potentiostat. To determine antimicrobial effectiveness, PMWP-controlled e-bandages were tested against clinical isolates of four prevalent chronic wound bacterial pathogens, methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, Acinetobacter baumannii , and Enterococcus faecium , and one fungal pathogen of emerging concern, Candida auris . PMWP-controlled e-bandages exhibited broad-spectrum activity against biofilms of all study isolates tested when programmed to deliver HOCl followed by H 2 O 2 . These results show that the PMWP operates effectively and is suitable for animal testing.

3.
bioRxiv ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38562889

ABSTRACT

Wound infections, exacerbated by the prevalence of antibiotic-resistant bacterial pathogens, necessitate innovative antimicrobial approaches. Polymicrobial infections, often involving Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus (MRSA), present formidable challenges due to biofilm formation and antibiotic resistance. Hypochlorous acid (HOCl), a potent antimicrobial agent produced naturally by the immune system, holds promise as an alternative therapy. An electrochemical bandage (e-bandage) that generates HOCl in situ was evaluated for treatment of murine wound biofilm infections containing both MRSA and P. aeruginosa with "difficult-to-treat" resistance. Previously, the HOCl-producing e-bandage was shown to reduce wound biofilms containing P. aeruginosa alone. Compared to non-polarized e-bandage (no HOCl production) and Tegaderm only controls, the polarized e-bandages reduced bacterial loads in wounds infected with MRSA plus P. aeruginosa (MRSA: vs Tegaderm only - 1.4 log10 CFU/g, p = 0.0015, vs. non-polarized - 1.1 log10 CFU/g, p = 0.026. P. aeruginosa: vs Tegaderm only - 1.6 log10 CFU/g, p = 0.0015, vs non-polarized - 1.6 log10 CFU/g, p = 0.0032), and MRSA alone (vs Tegaderm only - 1.3 log10 CFU/g, p = 0.0048, vs. non-polarized - 1.1 log10 CFU/g, p = 0.0048), without compromising wound healing or causing tissue toxicity. Addition of systemic antibiotics did not enhance the antimicrobial efficacy of e-bandages, highlighting their potential as standalone therapies. This study provides additional evidence for the HOCl-producing e-bandage as a novel antimicrobial strategy for managing wound infections, including in the context of antibiotic resistance and polymicrobial infections.

4.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38586004

ABSTRACT

Chronic wound infections can be difficult to treat and may lead to impaired healing and worsened patient outcomes. Novel treatment strategies are needed. This study evaluated effects of intermittently produced H2O2 and HOCl, generated via an electrochemical bandage (e-bandage), against methicillin-resistant Staphylococcus aureus biofilms in an agar membrane biofilm model. By changing the working electrode potential, the e-bandage generated either HOCl (1.5 VAg/AgCl) or H2O2 (-0.6 VAg/AgCl). The degree of biocidal activity of intermittent treatment with HOCl and H2O2 correlated with HOCl treatment time; HOCl treatment durations of 0, 1.5, 3, 4.5, and 6 hours (with the rest of the 6 hour total treatment time devoted to H2O2 generation) resulted in mean biofilm reductions of 1.36±0.2, 2.22±0.16, 3.46±0.38, 4.63±0.74 and 7.66±0.5 log CFU/cm2, respectively vs. non-polarized controls, respectively. However, application of H2O2 immediately after HOCl treatment was detrimental to biofilm removal. For example, 3-hours HOCl treatment followed by 3-hours H2O2 resulted in a 1.90±0.84 log CFU/cm2 lower mean biofilm reduction than 3-hours HOCl treatment followed by 3-hours non-polarization. HOCl generated over 3-hours exhibited biocidal activity for at least 7.5-hours after e-bandage operation ceased; 3-hours of HOCl generation followed by 7.5-hours of non-polarization resulted in a biofilm cell reduction of 7.92±0.12 log CFU/cm2 vs. non polarized controls. Finally, intermittent treatment with HOCl (i.e., interspersed with periods of e-bandage non-polarization) for various intervals showed similar effects (approximately 6 log CFU/cm2 reduction vs. non-polarized control) to continuous treatment with HOCl for 3-hours, followed by 3-hours of non-polarization. These findings suggest that timing and sequencing of HOCl and H2O2 treatments are crucial for maximizing biofilm control.

5.
Biofilm ; 7: 100183, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38380422

ABSTRACT

Antibiotic-resistant biofilm infections have emerged as public health concerns because of their enhanced tolerance to high-dose antibiotic treatments. The biofilm life cycle involves multiple developmental stages, which are tightly regulated by active cell-cell communication via specific extracellular signal messengers such as extracellular vesicles. This study was aimed at exploring the roles of extracellular vesicles secreted by Pseudomonas aeruginosa at different developmental stages in controlling biofilm growth. Our results show that extracellular vesicles secreted by P. aeruginosa biofilms during their exponential growth phase (G-EVs) enhance biofilm growth. In contrast, extracellular vesicles secreted by P. aeruginosa biofilms during their death/survival phase (D-EVs) can effectively inhibit/eliminate P. aeruginosa PAO1 biofilms up to 4.8-log10 CFU/cm2. The inhibition effectiveness of D-EVs against P. aeruginosa biofilms grown for 96 h improved further in the presence of 10-50 µM Fe3+ ions. Proteomic analysis suggests the inhibition involves an iron-dependent ferroptosis mechanism. This study is the first to report the functional role of bacterial extracellular vesicles in bacterial growth, which depends on the developmental stage of the parent bacteria. The finding of D-EV-activated ferroptosis-based bacterial death may have significant implications for preventing antibiotic resistance in biofilms.

6.
Microorganisms ; 12(2)2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38399783

ABSTRACT

Glycerol is a carbon source that produces good biomass under mixotrophic conditions. Enhancing the composition of culture media in algae biomass production improves growth rates, biomass yield, nutrient utilization efficiency, and overall cost-effectiveness. Among the key nutrients in the medium, nitrogen plays a pivotal role. Urea can be effectively used as a nitrogen source and is considered a low-cost form of nitrogen compared to other sources. Urea metabolism releases some CO2 in photosynthesis, and magnesium plays a major role in urea uptake. Magnesium is another key nutrient that is key in photosynthesis and other metabolic reactions. To maximize glycerol consumption in the mixotrophic system and to obtain high biomass and lipid productions, the variations in MgSO4·7H2O and urea concentrations were evaluated in the growth medium of the microalgae. A response surface methodology (RSM) using a central composite design (CCD) was designed to maximize glycerol consumption at the initial cellular growth rates (up to four days). The magnesium and urea supply varied from 0.3 to 1.7 g L-1. Response surface methodology was utilized to analyze the results, and the highest glycerol consumption rate, 770.2 mg L-1 d-1, was observed when C. vulgaris was grown at 1.7 g L-1 urea, 1.0 g L-1 MgSO4·7H2O. Using the optimal urea and magnesium concentrations with acetate, glucose, and glycerol as carbon sources, the same lipid content (10% average) was achieved on day 4 of mixotrophic C. vulgaris culture. Overall, the results show that mixotrophic growth of C. vulgaris using urea with an optimum magnesium concentration yields large amounts of fatty acids and that the carbon source greatly influences the profile of the fatty acids.

7.
Antimicrob Agents Chemother ; 68(2): e0121623, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38214514

ABSTRACT

The growing threat of antibiotic-resistant bacterial pathogens necessitates the development of alternative antimicrobial approaches. This is particularly true for chronic wound infections, which commonly harbor biofilm-dwelling bacteria. A novel electrochemical bandage (e-bandage) delivering low-levels of hypochlorous acid (HOCl) was evaluated against Pseudomonas aeruginosa murine wound biofilms. 5 mm skin wounds were created on the dorsum of mice and infected with 106 colony-forming units (CFU) of P. aeruginosa. Biofilms were formed over 2 days, after which e-bandages were placed on the wound beds and covered with Tegaderm. Mice were administered Tegaderm-only (control), non-polarized e-bandage (no HOCl production), or polarized e-bandage (using an HOCl-producing potentiostat), with or without systemic amikacin. Purulence and wound areas were measured before and after treatment. After 48 hours, wounds were harvested for bacterial quantification. Forty-eight hours of polarized e-bandage treatment resulted in mean biofilm reductions of 1.4 log10 CFUs/g (P = 0.0107) vs non-polarized controls and 2.2 log10 CFU/g (P = 0.004) vs Tegaderm-only controls. Amikacin improved CFU reduction in Tegaderm-only (P = 0.0045) and non-polarized control groups (P = 0.0312) but not in the polarized group (P = 0.3876). Compared to the Tegaderm-only group, there was less purulence in the polarized group (P = 0.009). Wound closure was neither impeded nor improved by either polarized or non-polarized e-bandage treatment. Concurrent amikacin did not impact wound closure or purulence. In conclusion, an HOCl-producing e-bandage reduced P. aeruginosa in wound biofilms with no impairment in wound healing, representing a promising antibiotic-free approach for addressing wound infection.


Subject(s)
Pseudomonas Infections , Wound Infection , Animals , Mice , Pseudomonas aeruginosa , Hypochlorous Acid , Amikacin , Pseudomonas Infections/microbiology , Wound Infection/microbiology , Bandages , Anti-Bacterial Agents , Biofilms
8.
bioRxiv ; 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37790575

ABSTRACT

A novel electrochemical bandage (e-bandage) delivering low-level hypochlorous acid (HOCl) was evaluated against Pseudomonas aeruginosa murine wound biofilms. 5 mm skin wounds were created on the dorsum of Swiss-Webster mice and infected with 10 6 colony forming units (CFU) of P. aeruginosa . Biofilms were formed over two days, after which e-bandages were placed on the wound beds and covered with Tegaderm™. Mice were administered Tegaderm-only (control), non-polarized e-bandage (no HOCl production), or polarized e-bandage (using an HOCl-producing potentiostat), with or without concurrently administered systemic amikacin. Purulence and wound areas were measured before and after treatment. After 48 hours, animals were sacrificed, and wounds were harvested for bacterial quantification. Forty-eight hours of polarized e-bandage treatment resulted in mean biofilm reductions of 1.4 log 10 CFUs/g (9.0 vs 7.6 log 10 ; p = 0.0107) vs non-polarized controls, and 2.2 log 10 CFU/g (9.8 vs 7.6 log 10 ; p = 0.004) vs Tegaderm only controls. Systemic amikacin improved CFU reduction in Tegaderm-only (p = 0.0045) and non-polarized control groups (p = 0.0312), but not in the polarized group (p = 0.3876). Compared to the Tegaderm only group, there was more purulence reduction in the polarized group (p = 0.009), but not in the non-polarized group (p = 0.064). Wound closure was not impeded or improved by either polarized or non-polarized e-bandage treatment. Concurrent amikacin did not impact wound closure or purulence. In conclusion, an HOCl-producing e-bandage reduced P. aeruginosa in wound biofilms with no impairment in wound healing, representing a promising antibiotic-free approach for addressing wound infections.

9.
J Appl Microbiol ; 134(9)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37667489

ABSTRACT

AIMS: As antimicrobial resistance is on the rise, treating chronic wound infections is becoming more complex. The presence of biofilms in wound beds contributes to this challenge. Here, the activity of a novel hypochlorous acid (HOCl) producing electrochemical bandage (e-bandage) against monospecies and dual-species bacterial biofilms formed by bacteria commonly found in wound infections was assessed. METHODS AND RESULTS: The system was controlled by a wearable potentiostat powered by a 3V lithium-ion battery and maintaining a constant voltage of + 1.5V Ag/AgCl, allowing continuous generation of HOCl. A total of 19 monospecies and 10 dual-species bacterial biofilms grown on polycarbonate membranes placed on tryptic soy agar (TSA) plates were used as wound biofilm models, with HOCl producing e-bandages placed over the biofilms. Viable cell counts were quantified after e-bandages were continuously polarized for 2, 4, 6, and 12 hours. Time-dependent reductions in colony forming units (CFUs) were observed for all studied isolates. After 12 hours, average CFU reductions of 7.75 ± 1.37 and 7.74 ± 0.60 log10 CFU/cm2 were observed for monospecies and dual-species biofilms, respectively. CONCLUSIONS: HOCl producing e-bandages reduce viable cell counts of in vitro monospecies and dual-species bacterial biofilms in a time-dependent manner in vitro. After 12 hours, >99.999% reduction in cell viability was observed for both monospecies and dual-species biofilms.


Subject(s)
Hypochlorous Acid , Wound Infection , Humans , Hypochlorous Acid/pharmacology , Bacteria , Bandages , Biofilms
10.
Adv Ther (Weinh) ; 6(5)2023 May.
Article in English | MEDLINE | ID: mdl-37485434

ABSTRACT

Biofilms formed by antibiotic-resistant bacteria in wound beds present unique challenges in terms of treating wound infections. In this work, the in vivo activity of a novel electrochemical bandage (e-bandage) composed of carbon fabric and controlled by a wearable potentiostat, designed to continuously deliver low amounts of hydrogen peroxide (H2O2) was evaluated against methicillin-resistant Staphylococcus aureus (MRSA), multidrug-resistant Pseudomonas aeruginosa (MDR-PA) and mixed-species (MRSA and MDR-PA) wound infections. Wounds created on Swiss Webster mice were infected with the above-named bacteria and biofilms allowed to establish on wound beds for 3 days. e-Bandages, which electrochemically reduce dissolved oxygen to H2O2 when polarized at -0.6 VAg/AgCl, were placed atop the infected wound bed and polarized continuously for 48 hours. Polarized e-bandage treatment resulted in significant reductions (p <0.001) of both mono-species and mixed-species wound infections. After e-bandage treatment, electron microscopy showed degradation of bacterial cells, and histopathology showed no obvious alteration to the inflammatory host response. Blood biochemistries showed no abnormalities. Taken all together, results of this work suggest that the described H2O2-producing e-bandage can effectively reduce in vivo MRSA, MDR-PA and mixed-species wound biofilms, and should be further developed as a potential antibiotic-free strategy for treatment of wound infections.

11.
Adv Eng Mater ; 25(1)2023 Jan.
Article in English | MEDLINE | ID: mdl-36817722

ABSTRACT

Chronic wound biofilm infections represent a major clinical challenge which results in a substantial burden to patients and healthcare systems. Treatment with topical antibiotics is oftentimes ineffective as a result of antibiotic-resistant microorganisms and biofilm-specific antibiotic tolerance. Use of biocides such as hypochlorous acid (HOCl) has gained increasing attention due to the lack of known resistance mechanisms. We designed an HOCl-generating electrochemical bandage (e-bandage) that delivers HOCl continuously at low concentrations targeting infected wound beds in a similar manner to adhesive antimicrobial wound dressings. We developed a battery-operated wearable potentiostat that controls the e-bandage electrodes at potentials suitable for HOCl generation. We demonstrated that e-bandage treatment was tunable by changing the applied potential. HOCl generation on electrode surfaces was verified using microelectrodes. The developed e-bandage showed time-dependent responses against in vitro Acinetobacter baumannii and Staphylococcus aureus biofilms, reducing viable cells to non-detectable levels within 6 and 12 hours of treatment, respectively. The developed e-bandage should be further evaluated as an alternative to topical antibiotics to treat wound biofilm infections.

12.
Antimicrob Agents Chemother ; 67(1): e0116622, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36472429

ABSTRACT

The antibiofilm activity of a hypochlorous acid (HOCl)-producing electrochemical bandage (e-bandage) was assessed against 14 yeast isolates in vitro. The evaluated e-bandage was polarized at +1.5 VAg/AgCl to allow continuous production of HOCl. Time-dependent decreases in the biofilm CFU counts were observed for all isolates with e-bandage treatment. The results suggest that the described HOCl-producing e-bandage could serve as a potential alternative to traditional antifungal wound biofilm treatments.


Subject(s)
Hypochlorous Acid , Saccharomyces cerevisiae , Hypochlorous Acid/pharmacology , Antifungal Agents/pharmacology , Bandages , Biofilms
13.
Biotechnol Bioeng ; 120(1): 250-259, 2023 01.
Article in English | MEDLINE | ID: mdl-36168277

ABSTRACT

The activity of a hypochlorous acid-producing electrochemical bandage (e-bandage) in preventing methicillin-resistant Staphylococcus aureus infection (MRSA) infection and removing biofilms formed by MRSA was assessed using a porcine explant biofilm model. e-Bandages inhibited S. aureus infection (p = 0.029) after 12 h (h) of exposure and reduced 3-day biofilm viable cell counts after 6, 12, and 24 h exposures (p = 0.029). Needle-type microelectrodes were used to assess HOCl concentrations in explant tissue as a result of e-bandage treatment; toxicity associated with e-bandage treatment was evaluated. HOCl concentrations in infected and uninfected explant tissue varied between 30 and 80 µM, decreasing with increasing distance from the e-bandage. Eukaryotic cell viability was reduced by an average of 71% and 65% in fresh and day 3-old explants, respectively, when compared to explants exposed to nonpolarized e-bandages. HOCl e-bandages are a promising technology that can be further developed as an antibiotic-free treatment for wound biofilm infections.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Wound Infection , Swine , Animals , Hypochlorous Acid/pharmacology , Staphylococcus aureus , Biofilms , Bandages , Wound Infection/prevention & control , Anti-Bacterial Agents/pharmacology
14.
Bioelectrochemistry ; 148: 108261, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36115186

ABSTRACT

Previously, an electrochemical bandage (e-bandage) that uses a three-electrode system to produce hydrogen peroxide (H2O2) electrochemically on its working electrode was developed as a potential strategy for treating biofilms; it showed activity in reducing biofilms in an agar biofilm model. Xanthan gum-based hydrogel, including NaCl, was used as the electrolyte. While H2O2 generated at the working electrode in the vicinity of a biofilm is a main mechanism of activity, the role of the counter electrode was not explored. The goal of this research was to characterize electrochemical reactions occurring on the counter electrode of the e-bandage. Counter electrode potential varied between 1.2 and 1.5 VAg/AgCl; ∼125 µM hypochlorous acid (HOCl) was generated within 24 h in the e-bandage system. When HOCl was not produced on the counter electrode (achieved by removing NaCl from the hydrogel), reduction of Acinetobacter baumannii BAA-1605 biofilm was 1.08 ± 0.38 log10 CFU/cm2 after 24 h treatment, whereas when HOCl was produced, reduction was 3.87 ± 1.44 log10 CFU/cm2. HOCl inhibited catalase activity, abrogating H2O2 decomposition. In addition to H2O2 generation, the previously described H2O2-generating e-bandage generates HOCl on the counter electrode, enhancing its biocidal activity.


Subject(s)
Hydrogen Peroxide , Hypochlorous Acid , Agar , Bandages , Catalase , Hydrogels/pharmacology , Hydrogen Peroxide/pharmacology , Hypochlorous Acid/pharmacology , Sodium Chloride
15.
J Appl Microbiol ; 133(6): 3755-3767, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36073322

ABSTRACT

AIMS: Effects of H2 O2 producing electrochemical-bandages (e-bandages) on methicillin-resistant Staphylococcus aureus colonization and biofilm removal were assessed using a porcine explant biofilm model. Transport of H2 O2 produced from the e-bandage into explant tissue and associated potential toxicity were evaluated. METHODS AND RESULTS: Viable prokaryotic cells from infected explants were quantified after 48 h treatment with e-bandages in three ex vivo S. aureus infection models: (1) reducing colonization, (2) removing young biofilms and (3) removing mature biofilms. H2 O2 concentration-depth profiles in explants/biofilms were measured using microelectrodes. Reductions in eukaryotic cell viability of polarized and nonpolarized noninfected explants were compared. e-Bandages effectively reduced S. aureus colonization (p = 0.029) and reduced the viable prokaryotic cell concentrations of young biofilms (p = 0.029) with limited effects on mature biofilms (p > 0.1). H2 O2 penetrated biofilms and explants and reduced eukaryotic cell viability by 32-44% compared to nonpolarized explants. CONCLUSIONS: H2 O2 producing e-bandages were most active when used to reduce colonization and remove young biofilms rather than to remove mature biofilms. SIGNIFICANCE AND IMPACT OF STUDY: The described e-bandages reduced S. aureus colonization and young S. aureus biofilms in a porcine explant wound model, supporting their further development as an antibiotic-free alternative for managing biofilm infections.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcus aureus , Swine , Animals , Hydrogen Peroxide/pharmacology , Biofilms , Bandages , Anti-Bacterial Agents/pharmacology
16.
Commun Biol ; 5(1): 390, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35474238

ABSTRACT

Controlling the orientation of redox enzymes on electrode surfaces is essential in the development of direct electron transfer (DET)-based bioelectrocatalytic systems. The electron transfer (ET) distance varies according to the enzyme orientation when immobilized on an electrode surface, which influences the interfacial ET rate. We report control of the orientation of carbon monoxide dehydrogenase (CODH) as a model enzyme through the fusion of gold-binding peptide (gbp) at either the N- or the C-terminus, and at both termini to strengthen the binding interactions between the fusion enzyme and the gold surface. Key factors influenced by the gbp fusion site are described. Collectively, our data show that control of the CODH orientation on an electrode surface is achieved through the presence of dual tethering sites, which maintains the enzyme cofactor within a DET-available distance (<14 Å), thereby promoting DET at the enzyme-electrode interface.


Subject(s)
Coenzymes , Enzymes, Immobilized , Aldehyde Oxidoreductases , Coenzymes/metabolism , Electron Transport , Enzymes, Immobilized/metabolism , Gold , Multienzyme Complexes
17.
Biosens Bioelectron ; 197: 113754, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34773749

ABSTRACT

Conventional methods for testing antibiotic susceptibility rely on bacterial growth on agar plates (diffusion assays) or in liquid culture (microdilution assays). These time-consuming assays use population growth as a proxy for cellular respiration. Herein we propose to use mediated extracellular electron transfer as a rapid and direct method to classify antibiotic-susceptible and -resistant bacteria. We tested antibiotics with diverse mechanisms of action (ciprofloxacin, imipenem, oxacillin, or tobramycin) with four important nosocomial pathogens (Acinetobacter baumannii, Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae) by adding the bacterial culture to a custom-designed electrochemical cell with a glassy-carbon electrode and growth media supplemented with a soluble electron transfer mediator, phenazine methosulfate (PMS). During cell respiration, liberated electrons reduce PMS, which is then oxidized on the electrode surface, and current is recorded. Using this novel approach, we were able to consistently classify strains as antibiotic-resistant or -susceptible in <90 min for methodology development and <150 min for blinded tests.


Subject(s)
Anti-Bacterial Agents , Biosensing Techniques , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria , Cell Differentiation , Cell Respiration , Electrons , Microbial Sensitivity Tests
18.
Antimicrob Agents Chemother ; 66(2): e0179221, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34930030

ABSTRACT

Wound infections are caused by bacteria and/or fungi. The presence of fungal biofilms in wound beds presents a unique challenge, as fungal biofilms may be difficult to eradicate. The goal of this work was to assess the in vitro antibiofilm activity of an H2O2-producing electrochemical bandage (e-bandage) against 15 yeast isolates representing commonly encountered species. Time-dependent decreases in viable biofilm CFU counts of all isolates tested were observed, resulting in no visible colonies with 48 h of exposure by plate culture. Fluorescence microscopic analysis showed extensive cell membrane damage of biofilm cells after e-bandage treatment. Reductions in intracellular ATP levels of yeast biofilm cells were recorded post e-bandage treatment. These results suggest that exposure to H2O2-producing e-bandages reduces in vitro viable cell counts of yeast biofilms, making this a potential new topical treatment approach for fungal wound infections.


Subject(s)
Bandages , Biofilms , Hydrogen Peroxide , Wound Infection , Electrochemistry , Humans , Hydrogen Peroxide/pharmacology , Wound Infection/microbiology , Wound Infection/prevention & control , Yeasts/pathogenicity
19.
Biosensors (Basel) ; 11(12)2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34940275

ABSTRACT

Exosomes, powerful extracellular nanovesicles released from almost all types of living cells, are considered the communication engines (messengers) that control and reprogram physiological pathways inside target cells within a community or between different communities. The cell-like structure of these extracellular vesicles provides a protective environment for their proteins and DNA/RNA cargos, which serve as biomarkers for many malicious diseases, including infectious diseases and cancers. Cancer-derived exosomes control cancer metastasis, prognosis, and development. In addition to the unique structure of exosomes, their nanometer size and tendency of interacting with cells makes them a viable novel drug delivery solution. In recent years, numerous research efforts have been made to quantify and characterize disease-derived exosomes for diagnosis, monitoring, and therapeutic purposes. This review aims to (1) relate exosome biomarkers to their origins, (2) focus on current isolation and detection methods, (3) discuss and evaluate the proposed technologies deriving from exosome research for cancer treatment, and (4) form a conclusion about the prospects of the current exosome research.


Subject(s)
Exosomes , Neoplasms , Biomarkers , Cell Communication , Drug Delivery Systems , Humans , Neoplasms/diagnosis , Proteins
20.
Microbiol Spectr ; 9(2): e0055721, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34704827

ABSTRACT

Central line-associated bloodstream infection (CLABSI) contributes to mortality and cost. While aseptic dressings and antibiotic-impregnated catheters prevent some extraluminal infections, intraluminal infections remain a source of CLABSIs. In this proof-of-concept study, an electrochemical intravascular catheter (e-catheter) prototype capable of electrochemically generating hypochlorous acid intraluminally using platinum electrodes polarized at a constant potential of 1.5 electrode potential relative to saturated silver/silver chloride reference electrode measured in volts (VAg/AgCl) was developed. After 24 h of prepolarization at 1.5 VAg/AgCl, their activity was tested against clinical isolates of Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecium, and Escherichia coli derived from catheter-related infections. e-catheters generated a mean HOCl concentration of 15.86 ± 4.03 µM and had a mean pH of 6.14 ± 0.79. E-catheters prevented infections of all four species, with an average reduction of 8.41 ± 0.61 log10 CFU/ml at 48 h compared to controls. Polarized e-catheters which generate low amounts of HOCl continuously should be further developed to prevent intraluminal infection. IMPORTANCE Catheter-related infections constitute an economic and mortality burden in health care. Several options are available to reduce the risk of infection, but only a few focus on preventing intraluminal infection, which occurs in long-term catheters, most often used for dialysis, prolonged treatment, or chemotherapy. A prototype of a catheter called an "e-catheter" composed of three electrodes, capable of producing hypochlorous acid (HOCl) electrochemically in its lumen, was developed. When polarized at 1.5 V, chloride ions in the solution are oxidized to continuously produce low amounts of HOCl, which exhibits antibacterial activity in the lumen of the catheter. Here, this prototype was shown to be able to generate HOCl as well as prevent infection in a preliminary in vitro catheter model. This approach is a potential strategy for catheter infection prevention.


Subject(s)
Catheter-Related Infections/prevention & control , Catheters , Hypochlorous Acid/pharmacology , Anti-Bacterial Agents/pharmacology , Catheter-Related Infections/microbiology , Catheters/microbiology , Electrochemical Techniques , Escherichia coli , Female , Humans , Male , Staphylococcal Infections/microbiology , Staphylococcal Infections/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...