Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Pharmaceuticals (Basel) ; 5(2): 114-32, 2012 Feb 02.
Article in English | MEDLINE | ID: mdl-24288084

ABSTRACT

In the last decade, considerable evidence as accumulated to support the development of Transient Receptor Potential Vanilloid 1 (TRPV1) antagonists for the treatment of various chronic pain conditions. Whereas there is a widely accepted rationale for the development of TRPV1 antagonists for the treatment of various inflammatory pain conditions, their development for indications of chronic pain, where conditions of tactical, mechanical and spontaneous pain predominate, is less clear. Preclinical localization and expression studies provide a firm foundation for the use of molecules targeting TRPV1 for conditions of bone pain, osteoarthritis and neuropathic pain. Selective TRPV1 antagonists weakly attenuate tactile and mechanical hypersensivity and are partially effective for behavioral and electrophysiological endpoints that incorporate aspects of spontaneous pain. While initial studies with TRPV1 antagonist in normal human subjects indicate a loss of warm thermal perception, clinical studies assessing allelic variants suggests that TRPV1 may mediate other sensory modalities under certain conditions. The focus of this review is to summarize the current perspectives of TRPV1 for the treatment of conditions beyond those with a primary thermal sensitivity.

2.
Neuropsychopharmacology ; 35(11): 2165-78, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20613718

ABSTRACT

The responsiveness of central noradrenergic systems to stressors and cocaine poses norepinephrine as a potential common mechanism through which drug re-exposure and stressful stimuli promote relapse. This study investigated the role of noradrenergic systems in the reinstatement of extinguished cocaine-induced conditioned place preference by cocaine and stress in male C57BL/6 mice. Cocaine- (15 mg/kg, i.p.) induced conditioned place preference was extinguished by repeated exposure to the apparatus in the absence of drug and reestablished by a cocaine challenge (15 mg/kg), exposure to a stressor (6-min forced swim (FS); 20-25°C water), or administration of the α-2 adrenergic receptor (AR) antagonists yohimbine (2 mg/kg, i.p.) or BRL44408 (5, 10 mg/kg, i.p.). To investigate the role of ARs, mice were administered the nonselective ß-AR antagonist, propranolol (5, 10 mg/kg, i.p.), the α-1 AR antagonist, prazosin (1, 2 mg/kg, i.p.), or the α-2 AR agonist, clonidine (0.03, 0.3 mg/kg, i.p.) before reinstatement testing. Clonidine, prazosin, and propranolol failed to block cocaine-induced reinstatement. The low (0.03 mg/kg) but not high (0.3 mg/kg) clonidine dose fully blocked FS-induced reinstatement but not reinstatement by yohimbine. Propranolol, but not prazosin, blocked reinstatement by both yohimbine and FS, suggesting the involvement of ß-ARs. The ß-2 AR antagonist ICI-118551 (1 mg/kg, i.p.), but not the ß-1 AR antagonist betaxolol (10 mg/kg, i.p.), also blocked FS-induced reinstatement. These findings suggest that stress-induced reinstatement requires noradrenergic signaling through ß-2 ARs and that cocaine-induced reinstatement does not require AR activation, even though stimulation of central noradrenergic neurotransmission is sufficient to reinstate.


Subject(s)
Cocaine/administration & dosage , Conditioning, Psychological/physiology , Extinction, Psychological/physiology , Norepinephrine/physiology , Receptors, Adrenergic, beta-2/physiology , Stress, Psychological/psychology , Adrenergic Antagonists/pharmacology , Animals , Behavior, Addictive/physiopathology , Behavior, Addictive/psychology , Conditioning, Psychological/drug effects , Extinction, Psychological/drug effects , Male , Mice , Mice, Inbred C57BL , Stress, Psychological/physiopathology , Synaptic Transmission/drug effects , Synaptic Transmission/physiology
3.
Neurobiol Dis ; 39(2): 148-55, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20381618

ABSTRACT

Rimonabant was the first clinically marketed cannabinoid (CB)(1) receptor antagonist developed to treat obesity. Unfortunately, CB(1) receptor antagonism produced adverse psychiatric events in patients. To determine whether this occurs pre-clinically, we investigated the effects of rimonabant in rodent models of mood disorders. Chronic treatment with rimonabant increased immobility time in the rat forced swim test and reduced the consumption of sucrose-sweetened water in an assay postulated to model anhedonia. These responses were similar to the effects elicited by chronic mild stress in these behavioral models, which, taken together, are indicative of a depression-like phenotype. Additionally, chronic treatment with rimonabant produced decreases in frontal cortex serotonin levels, marked reductions in hippocampal cell proliferation, survival, and BDNF levels, and elevations in the concentrations of pro-inflammatory cytokines including interferon gamma and TNF alpha. These preclinical findings mimic clinical reports and implicate possible mechanisms responsible for the unfavorable psychiatric events reported following chronic rimonabant use.


Subject(s)
Phenotype , Piperidines/adverse effects , Pyrazoles/adverse effects , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Stress, Psychological/chemically induced , Stress, Psychological/physiopathology , Analysis of Variance , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Cytokines/metabolism , Disease Models, Animal , Flow Cytometry/methods , Food Preferences/drug effects , Frontal Lobe/drug effects , Frontal Lobe/metabolism , Immobility Response, Tonic/drug effects , Male , Microdialysis/methods , Rats , Rats, Sprague-Dawley , Rimonabant , Stress, Psychological/pathology , Sucrose/administration & dosage , Sweetening Agents/administration & dosage , Swimming/psychology
4.
Psychopharmacology (Berl) ; 209(4): 303-11, 2010 May.
Article in English | MEDLINE | ID: mdl-20224888

ABSTRACT

INTRODUCTION: The effects of angiotensin (Ang) IV result from binding to a constitutively active metallopeptidase known as the AT(4) receptor (or oxytocinase/insulin-regulated membrane aminopeptidase). While in vitro evidence indicates that Ang IV inhibits the peptidase activity of AT(4) receptors, leading to increases in the concentrations of several peptides, including oxytocin, the consequence of inhibiting AT(4) peptidase activity in vivo remains unresolved. DISCUSSION: Microdialysis coupled to immunoassay techniques revealed that systemic and intra-amygdala injection of Nle-Ang IV, a metabolically stable derivative of Ang IV, significantly elevated extracellular levels of oxytocin in the rat amygdala. Based on earlier reports describing the anxiolytic-like effects of oxytocin, we investigated whether disrupting AT(4) peptidase activity would yield similar responses. In the mouse four-plate test, acute treatment with either Nle-Ang IV or LVV-hemorphin-7, a related AT(4) receptor ligand, elicited significant increases in the number of punished crossings. These behavioral responses were comparable to the anxiolytic-like effects of oxytocin and to the standard anxiolytic agent, chlordiazepoxide. Cotreatment with either the AT(4) receptor antagonist, divalinal, or the selective oxytocin receptor antagonist, WAY-162720, reversed the anxiolytic-like effects of Nle-Ang IV, while combining ineffective doses of Nle-Ang IV and oxytocin increased the number of punished crossings in this assay. Conversely, Nle-Ang IV and LVV-hemorphin-7 were inactive in the mouse tail suspension test of antidepressant activity. These findings represent the first in vivo demonstration of the peptidase activity of AT(4) receptors, confirm the anxiolytic-like properties of Ang IV, and reveal a unique and previously uncharacterized relationship between AT(4) and oxytocin receptor systems.


Subject(s)
Amygdala/drug effects , Angiotensin II/analogs & derivatives , Anti-Anxiety Agents/administration & dosage , Anxiety/prevention & control , Oxytocin/metabolism , Receptors, Angiotensin/agonists , Receptors, Oxytocin/agonists , Amygdala/metabolism , Angiotensin II/administration & dosage , Angiotensin Receptor Antagonists , Animals , Anxiety/metabolism , Anxiety/psychology , Behavior, Animal/drug effects , Depression/drug therapy , Depression/metabolism , Depression/psychology , Dose-Response Relationship, Drug , Exploratory Behavior/drug effects , Hemoglobins/administration & dosage , Immunoassay , Injections, Intraperitoneal , Injections, Intraventricular , Injections, Subcutaneous , Ligands , Male , Mice , Microdialysis , Peptide Fragments/administration & dosage , Rats , Rats, Sprague-Dawley , Receptors, Angiotensin/metabolism , Receptors, Oxytocin/antagonists & inhibitors , Receptors, Oxytocin/metabolism , Time Factors , Up-Regulation
5.
Int J Neuropsychopharmacol ; 13(9): 1193-205, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20047711

ABSTRACT

Biogenic amines such as norepinephrine, dopamine, and serotonin play a well-described role in the treatment of mood disorders and some types of pain. As alpha2A-adrenoceptors regulate the release of these neurotransmitters, we examined the therapeutic potential of BRL 44408, a potent (Ki=8.5 nM) and selective (>50-fold) alpha2A-adrenoceptor antagonist (K(B)=7.9 nM). In rats, BRL 44408 penetrated the central nervous system resulting in peak brain and plasma concentrations of 586 ng/g and 1124 ng/ml, respectively. In a pharmacodynamic assay, pretreatment with BRL 44408 to rats responding under a fixed-ratio 30 operant response paradigm resulted in a rightward shift of the clonidine dose-response curve, an effect indicative of alpha2-adrenoceptor antagonism in vivo. Consistent with presynaptic autoreceptor antagonism and tonic regulation of neurotransmitter release, acute administration of BRL 44408 elevated extracellular concentrations of norepinephrine and dopamine, but not serotonin, in the medial prefrontal cortex. Additionally, BRL 44408, probably by inhibiting alpha2A heteroceptors, produced a significant increase in cortical levels of acetylcholine. In the forced swim test and schedule-induced polydipsia assay, BRL 44408 produced an antidepressant-like response by dose-dependently decreasing immobility time and adjunctive water intake, respectively, while in a model of visceral pain, BRL 44408 exhibited analgesic activity by decreasing para-phenylquinone (PPQ)-induced abdominal stretching. Finally, BRL 44408 did not produce deficits in overall motor coordination nor alter general locomotor activity. This preclinical characterization of the neurochemical and behavioural profile of BRL 44408 suggests that selective antagonism of alpha2A-adrenoceptors may represent an effective treatment strategy for mood disorders and visceral pain.


Subject(s)
Adrenergic alpha-2 Receptor Antagonists/pharmacology , Analgesics/pharmacology , Antidepressive Agents/pharmacology , Depression/drug therapy , Imidazoles/pharmacology , Isoindoles/pharmacology , Receptors, Adrenergic, alpha-2/metabolism , Adrenergic alpha-2 Receptor Antagonists/pharmacokinetics , Analgesics/pharmacokinetics , Animals , Antidepressive Agents/pharmacokinetics , Biogenic Monoamines/metabolism , Brain/metabolism , CHO Cells , Cricetinae , Cricetulus , Disease Models, Animal , Drug Evaluation, Preclinical , Imidazoles/pharmacokinetics , Isoindoles/pharmacokinetics , Male , Mice , Microdialysis , Radioligand Assay , Rats , Rats, Sprague-Dawley , Swimming , Thirst/drug effects
6.
J Pharmacol Exp Ther ; 332(1): 190-201, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19828876

ABSTRACT

The preclinical characterization of WS-50030 [7-{4-[3-(1H-inden-3-yl)propyl]piperazin-1-yl}-1,3-benzoxazol-2(3H)-one] is described. In vitro binding and functional studies revealed highest affinity to the D(2) receptor (D(2L) K(i), 4.0 nM) and serotonin transporter (K(i), 7.1 nM), potent D(2) partial agonist activity (EC(50), 0.38 nM; E(max), 30%), and complete block of the serotonin transporter (IC(50), 56.4 nM). Consistent with this in vitro profile, WS-50030 (10 mg/kg/day, 21 days) significantly increased extracellular 5-HT in the rat medial prefrontal cortex, short-term WS-50030 treatment blocked apomorphine-induced climbing (ID(50), 0.51 mg/kg) in a dose range that produced minimal catalepsy in mice and induced low levels of contralateral rotation in rats with unilateral substantia nigra 6-hydroxydopamine lesions (10 mg/kg i.p.), a behavioral profile similar to that of the D(2) partial agonist aripiprazole. In a rat model predictive of antipsychotic-like activity, WS-50030 and aripiprazole reduced conditioned avoidance responding by 42 and 55% at 10 mg/kg, respectively. Despite aripiprazole's reported lack of effect on serotonin transporters, long-term treatment with aripiprazole or WS-50030 reversed olfactory bulbectomy-induced hyperactivity at doses that did not reduce activity in sham-operated rats, indicating antidepressant-like activity for both compounds. Despite possessing serotonin reuptake inhibitory activity in addition to D(2) receptor partial agonism, WS-50030 displays activity in preclinical models predictive of antipsychotic- and antidepressant efficacy similar to aripiprazole, suggesting potential efficacy of WS-50030 versus positive and negative symptoms of schizophrenia, comorbid mood symptoms, bipolar disorder, major depressive disorder, and treatment-resistant depression. Furthermore, WS-50030 provides a tool to further explore how combining these mechanisms might differentiate from other antipsychotics or antidepressants.


Subject(s)
Antidepressive Agents/pharmacology , Antipsychotic Agents/pharmacology , Benzoxazoles/pharmacology , Dopamine Agonists/pharmacology , Indenes/pharmacology , Receptors, Dopamine D2/agonists , Selective Serotonin Reuptake Inhibitors/pharmacology , Animals , Antidepressive Agents/chemistry , Antipsychotic Agents/chemistry , Avoidance Learning/drug effects , Behavior, Animal/drug effects , Benzoxazoles/chemistry , Brain/drug effects , Brain/metabolism , CHO Cells , Cricetinae , Cricetulus , Dopamine/metabolism , Dopamine Agonists/chemistry , Drug Evaluation, Preclinical , Humans , Indenes/chemistry , Male , Mice , Mice, Inbred Strains , Microdialysis , Motor Activity/drug effects , Protein Binding , Rats , Rats, Sprague-Dawley , Rats, Wistar , Serotonin/metabolism , Serotonin 5-HT1 Receptor Antagonists , Serotonin 5-HT2 Receptor Antagonists , Selective Serotonin Reuptake Inhibitors/chemistry , Transfection
7.
Neuropharmacology ; 58(1): 69-77, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19615387

ABSTRACT

The widely reported effects of oxytocin (OT) on CNS function has generated considerable interest in the therapeutic potential for targeting this system for a variety of human psychiatric diseases, including anxiety disorders, autism, schizophrenia, and depression. The utility of synthetic OT, as both a research tool and neurotherapeutic, is limited by the physiochemical properties inherent in most neuropeptides, notably its short half-life and poor blood brain barrier penetration. Subsequently, the discovery and development of non-peptide molecules that act as selective agonists of the oxytocin receptor (OTR) has been an important goal of the field. In this study, we report the receptor and behavioral pharmacology of WAY-267464, a first generation small-molecule OTR agonist. WAY-267464 is a high-affinity, potent, and selective (vs. V1a, V2, V1b) agonist of the OTR. In assays measuring both behavioral (four-plate test, elevated zero maze) and autonomic (stress-induced hyperthermia) parameters of the anxiety response, WAY-267464 exhibits an anxiolytic-like profile similar to OT. We have demonstrated that the anxiolytic-like profile of WAY-267464 is mediated through central sites of action. WAY-267464 also significantly reverses disruption in prepulse inhibition of the acoustic startle reflex induced by either MK-801 or amphetamine, similar to the antipsychotic-like effects previously reported for OT. Interestingly, in the mouse tail suspension test, WAY-267464 failed to produce changes in immobility that are seen with OT, raising the question of whether the antidepressant-like activity of OT may be working independently of the OTR. A selective OTR antagonist also failed to block the effects of OT on immobility in the TST. The significance of these findings for shaping the clinical development of OTR agonists is discussed.


Subject(s)
Anti-Anxiety Agents/pharmacology , Behavior, Animal/drug effects , Oxytocin/pharmacology , Receptors, Oxytocin/agonists , Acoustic Stimulation/adverse effects , Animals , Avoidance Learning/drug effects , Benzodiazepines/pharmacology , Benzodiazepines/therapeutic use , CHO Cells , Cricetinae , Cricetulus , Fever/drug therapy , Fever/etiology , Hindlimb Suspension/methods , Humans , Male , Maze Learning/drug effects , Mice , Mice, Inbred C57BL , Neural Inhibition/drug effects , Oxytocin/agonists , Protein Binding/drug effects , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Rats , Rats, Sprague-Dawley , Reflex, Startle/drug effects , Reflex, Startle/physiology , Stress, Psychological/complications
8.
Rapid Commun Mass Spectrom ; 23(24): 4003-12, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19918933

ABSTRACT

Analyzing brain microdialysate samples by mass spectrometry is challenging due to the high salt content of the artificial cerebral spinal fluid (aCSF), low analyte concentrations and small sample volumes collected. A drug and its major metabolites can be examined in brain microdialysates by targeted approaches such as selected reaction monitoring (SRM) which provides selectivity and high sensitivity. However, this approach is not well suited for metabolite profiling in the brain which aims to determine biotransformation pathways. Identifying minor metabolites, or metabolites that arise from brain metabolism, remains a challenge and, for a drug in early discovery, identification of metabolites present in the brain can provide useful information for understanding the pharmacological activity and potential toxicological liabilities of the drug. A method is described here for rapid metabolite profiling in brain microdialysates that involves sample clean-up using C18 ZipTips to remove salts followed by direct infusion nanoelectrospray with an LTQ/Orbitrap mass spectrometer using real-time internal recalibration. Full scan mass spectra acquired at high resolving power (100 K at m/z 400) were examined manually and with mass defect filtering. Metabolite identification was aided by sub-parts-per-million mass accuracy and structural characterization was accomplished by tandem mass spectrometry (MS/MS) experiments in the Orbitrap or LTQ depending on the abundance of the metabolite. Using this approach, brain microdialysate samples from rats dosed with one of four CNS drugs (imipramine, reboxetine, citalopram or trazodone) were examined for metabolites. For each drug investigated, metabolites, some of which not previously reported in rat brain, were identified and characterized.


Subject(s)
Brain Chemistry , Brain/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Animals , Biotransformation , Central Nervous System Agents/chemistry , Central Nervous System Agents/metabolism , Male , Microdialysis/instrumentation , Rats , Rats, Sprague-Dawley , Spectrometry, Mass, Electrospray Ionization/instrumentation
9.
J Med Chem ; 52(15): 4955-9, 2009 Aug 13.
Article in English | MEDLINE | ID: mdl-19719241

ABSTRACT

On the basis of the previously reported clinical candidate, SSA-426 (1), a series of related 2-piperazin-1-ylquinoline derivatives 3-16 were synthesized and evaluated as dual-acting serotonin (5-HT) reuptake inhibitors and 5-HT1A receptor antagonists. In particular, compound 7 exhibits potent functional activities at both the 5-HT transporter and 5-HT1A receptor, good selectivity over the alpha1-adrenergic and dopaminergic receptors, acceptable pharmacokinetic properties, and a favorable in vivo profile.


Subject(s)
Piperazines/chemical synthesis , Quinolines/chemical synthesis , Selective Serotonin Reuptake Inhibitors/chemical synthesis , Serotonin 5-HT1 Receptor Antagonists , Serotonin Antagonists/chemical synthesis , Animals , Antidepressive Agents/pharmacology , CHO Cells , Cricetinae , Cricetulus , Cytochrome P-450 Enzyme Inhibitors , Humans , Microdialysis , Piperazines/pharmacology , Quinolines/pharmacology , Rats , Receptors, Adrenergic, alpha-1/metabolism , Receptors, Dopamine/metabolism , Serotonin Antagonists/pharmacokinetics , Serotonin Antagonists/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacokinetics , Selective Serotonin Reuptake Inhibitors/pharmacology , Structure-Activity Relationship
10.
Bioorg Med Chem ; 17(14): 5153-63, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19523834

ABSTRACT

A series of 1-aminoethyl-3-arylsulfonyl-1H-pyrrolo[2,3-b]pyridines 10a-z was prepared as novel 5-HT(6) ligands. The best compounds were high affinity, full agonists at 5-HT(6) receptors. Several agonists demonstrated good selectivity over other serotonergic and dopaminergic receptors. Acute administration of selective agonist 10e significantly increased extracellular GABA concentrations in rat frontal cortex. This compound also reduced adjunctive drinking behavior in the rat schedule-induced polydipsia assay, possibly predictive of efficacy in obsessive compulsive disorder and other anxiety related disorders.


Subject(s)
Cerebral Cortex/drug effects , Drinking Behavior/drug effects , Receptors, Serotonin/metabolism , Serotonin Receptor Agonists/chemistry , Serotonin Receptor Agonists/pharmacology , Animals , Cerebral Cortex/metabolism , Glutamic Acid/analysis , Glutamic Acid/metabolism , HeLa Cells , Humans , Protein Binding , Rats , Serotonin Receptor Agonists/administration & dosage , Serotonin Receptor Agonists/chemical synthesis , gamma-Aminobutyric Acid/analysis , gamma-Aminobutyric Acid/metabolism
11.
Pharmacol Biochem Behav ; 92(4): 649-54, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19303035

ABSTRACT

One of the few preclinical models used to identify mood stabilizers is an assay in which amphetamine-induced hyperactivity (AMPH) is potentiated by the benzodiazepine chlordiazepoxide (CDP), an effect purportedly blocked by mood stabilizers. Our data here challenge this standard interpretation of the AMPH-CDP model. We show that the potentiating effects of AMPH-CDP are not explained by a pharmacokinetic interaction as both drugs have similar brain and plasma exposures whether administered alone or in combination. Of concern, however, we find that combining CDP (1-12 mg/kg) with AMPH (3 mg/kg) results in an inverted-U dose response in outbred CD-1 as well as inbred C57Bl/6N and 129S6 mice (peak hyperactivity at 3 mg/kg CDP+3 mg/kg AMPH). Such an inverted-U dose response complicates interpreting whether a reduction in hyperactivity produced by a mood stabilizer reflects a "blockade" or a "potentiation" of the mixture. In fact, we show that the prototypical mood stabilizer valproic acid augments the effects of CDP on hypolocomotion and anxiolytic-like behavior (increases punished crossings by Swiss-Webster mice in the four-plate test). We argue that these data, in addition to other practical and theoretical concerns surrounding the model, limit the utility of the AMPH-CDP mixture model in drug discovery.


Subject(s)
Affect/drug effects , Amphetamine/administration & dosage , Chlordiazepoxide/administration & dosage , Animals , Antimanic Agents/administration & dosage , Anxiety/drug therapy , Bipolar Disorder/drug therapy , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Drug Synergism , Male , Mice , Mice, Inbred C57BL , Models, Neurological , Motor Activity/drug effects , Valproic Acid/administration & dosage
12.
Psychopharmacology (Berl) ; 203(1): 41-52, 2009 Mar.
Article in English | MEDLINE | ID: mdl-18949460

ABSTRACT

RATIONALE: Acid sensing ion channels (ASICs) are proton-gated ion channels located in the central and peripheral nervous systems. Of particular interest is ASIC1a, which is located in areas associated with fear and anxiety behaviors. Recent reports suggest a role for ASIC1a in preclinical models of fear conditioning and anxiety. OBJECTIVES: The present experiments evaluated various ASIC inhibitors in preclinical models of autonomic and behavioral parameters of anxiety. In addition, neurochemical studies evaluated the effects of an ASIC inhibitor (A-317567) on neurotransmitter levels in the amygdala. RESULTS: In electrophysiological studies using hippocampal primary neuronal cultures, three ASIC inhibitors (PcTX-1, A-317567, and amiloride) produced concentration-dependent inhibition of acid-evoked currents. In the stress-induced hyperthermia model, acute administration of psalmotoxin 1 (PcTX-1; 10-56 ng, i.c.v.), A-317567 (0.1-1.0 mg/kg, i.p.), and amiloride (10-100 mg/kg, i.p.) prevented stress-induced elevations in core body temperature. In the four-plate test, acute treatment with PcTX-1 (10-56 ng, i.c.v.) and A-317567 (0.01-0.1 mg/kg, i.p.), but not amiloride (3-100 mg/kg, i.p.), produced dose-dependent and significant increases in the number of punished crossings relative to vehicle-treated animals. Additionally, PcTX-1 (56-178 ng, i.c.v.), A-317567 (0.1-10 mg/kg, i.p.), and amiloride (10-100 mg/kg, i.p.) lacked significant anxiolytic-like activity in the elevated zero maze. In neurochemical studies, an infusion of A-317567 (100 microM) into the amygdala significantly elevated the extracellular levels of GABA, but not glutamate, in this brain region. CONCLUSIONS: These findings demonstrate that ASIC inhibition produces anxiolytic-like effects in some behavioral models and indicate a potential role for GABAergic mechanisms to underlie these anxiolytic-like effects.


Subject(s)
Anti-Anxiety Agents/pharmacology , Anxiety/drug therapy , Drug Evaluation, Preclinical , Nerve Tissue Proteins/antagonists & inhibitors , Sodium Channel Blockers/pharmacology , Acid Sensing Ion Channels , Amiloride/pharmacology , Amygdala/drug effects , Amygdala/metabolism , Animals , Anxiety/metabolism , Anxiety/psychology , Behavior, Animal/drug effects , Cells, Cultured , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Exploratory Behavior/drug effects , Fever/metabolism , Fever/prevention & control , Fever/psychology , Glutamic Acid/metabolism , Hippocampus/drug effects , Hippocampus/embryology , Hippocampus/metabolism , Isoquinolines/pharmacology , Male , Membrane Potentials , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microdialysis , Naphthalenes/pharmacology , Nerve Tissue Proteins/metabolism , Neurons/drug effects , Neurons/metabolism , Peptides , Rats , Rats, Sprague-Dawley , Sodium Channels/metabolism , Spider Venoms/pharmacology , Stress, Psychological/complications , Stress, Psychological/metabolism , gamma-Aminobutyric Acid/metabolism
13.
J Pharmacol Exp Ther ; 327(3): 827-39, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18753411

ABSTRACT

Positive allosteric modulators (PAMs) of metabotropic glutamate receptor subtype 5 (mGlu5) enhance N-methyl-d-aspartate receptor function and may represent a novel approach for the treatment of schizophrenia. ADX47273 [S-(4-fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone], a recently identified potent and selective mGlu5 PAM, increased (9-fold) the response to threshold concentration of glutamate (50 nM) in fluorometric Ca(2+) assays (EC(50) = 170 nM) in human embryonic kidney 293 cells expressing rat mGlu5. In the same system, ADX47273 dose-dependently shifted mGlu5 receptor glutamate response curve to the left (9-fold at 1 microM) and competed for binding of [(3)H]2-methyl-6-(phenylethynyl)pyridine (K(i) = 4.3 microM), but not [(3)H]quisqualate. In vivo, ADX47273 increased extracellular signal-regulated kinase and cAMP-responsive element-binding protein phosphorylation in hippocampus and prefrontal cortex, both of which are critical for glutamate-mediated signal transduction mechanisms. In models sensitive to antipsychotic drug treatment, ADX47273 reduced rat-conditioned avoidance responding [minimal effective dose (MED) = 30 mg/kg i.p.] and decreased mouse apomorphine-induced climbing (MED = 100 mg/kg i.p.), with little effect on stereotypy or catalepsy. Furthermore, ADX47273 blocked phencyclidine, apomorphine, and amphetamine-induced locomotor activities (MED = 100 mg/kg i.p.) in mice and decreased extracellular levels of dopamine in the nucleus accumbens, but not in the striatum, in rats. In cognition models, ADX47273 increased novel object recognition (MED = 1 mg/kg i.p.) and reduced impulsivity in the five-choice serial reaction time test (MED = 10 mg/kg i.p.) in rats. Taken together, these effects are consistent with the hypothesis that allosteric potentiation of mGlu5 may provide a novel approach for development of antipsychotic and procognitive agents.


Subject(s)
Allosteric Regulation/drug effects , Antipsychotic Agents/pharmacology , Cognition/drug effects , Oxadiazoles/pharmacology , Piperidines/pharmacology , Receptors, Metabotropic Glutamate/drug effects , Animals , Avoidance Learning/drug effects , Brain Chemistry/drug effects , Cell Line , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Hippocampus/metabolism , Humans , Prefrontal Cortex/metabolism , Rats , Receptor, Metabotropic Glutamate 5
14.
Curr Protoc Neurosci ; Chapter 9: Unit 9.27, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18428677

ABSTRACT

Obsessive-compulsive disorder (OCD) is difficult to model in animals due to the involvement of both mental (obsessions) and physical (compulsions) symptoms. Due to limitations of using animals to evaluate obsessions, OCD models are limited to evaluation of the compulsive and repetitive behaviors of animals. Of these, models of adjunctive behaviors offer the most value in regard to predicting efficacy of anti-OCD drugs in the clinic. Adjunctive behaviors are those that are maintained indirectly by the variables that control another behavior, rather than directly by their own typical controlling variables. Schedule-induced polydipsia (SIP) is an adjunctive model in which rats exhibit exaggerated drinking behavior (polydipsia) when presented with food pellets under a fixed-time schedule. The polydipsic response is an excessive manifestation of a normal behavior (drinking), providing face validity to the model. Furthermore, clinically effective drugs for the treatment of OCD decrease SIP. This protocol describes a rat SIP model of OCD and provides preclinical data for drugs that decrease polydipsia and are clinically effective in the treatment of OCD.


Subject(s)
Disease Models, Animal , Obsessive-Compulsive Disorder/physiopathology , Thirst/physiology , Animals , Male , Rats , Time
15.
Psychopharmacology (Berl) ; 197(4): 601-11, 2008 May.
Article in English | MEDLINE | ID: mdl-18311561

ABSTRACT

RATIONALE: Neuropeptide S (NPS) and its receptor (NPSR) comprise a recently deorphaned G protein-coupled receptor system. Recent reports implicate NPS in the mediation of anxiolytic-like activity in rodents. OBJECTIVES: To extend the characterization of NPS, the present studies examined the in vitro pharmacology of mouse NPSR and the in vivo pharmacology of NPS in three preclinical mouse models predictive of anxiolytic action: the four-plate test (FPT), elevated zero maze (EZM), and stress-induced hyperthermia (SIH). The ability of NPS to produce antidepressant-like effects in the tail suspension test (TST) was also investigated. RESULTS: In vitro, mouse NPS 1-20 (mNPS 1-20) and the C-terminal glutamine-truncated mouse NPS 1-19 bound mNPSR with high affinity (Ki = 0.203 +/- 0.060, 0.635 +/- 0.141 nM, respectively) and potently activated intracellular calcium release (EC50 = 3.73 +/- 1.08, 4.10 +/- 1.25 nM). NPS produced effects in vivo consistent with anxiolytic-like activity. In FPT, NPS increased punished crossings (minimal effective dose [MED]: mNPS 1-20 = 0.2 microg, mNPS(1-19) = 0.02 microg), similar to the reference anxiolytic, alprazolam (MED 0.5 microg). NPS increased the percentage of time spent in the open quadrants of EZM (MED: mNPS 1-20 = 0.1 microg, mNPS 1-19 = 1.0 microg), like the reference anxiolytic, chlordiazepoxide (MED 56 microg). In SIH, NPS attenuated stress-induced increases in body temperature similar to alprazolam but with a large potency difference between the NPS peptides (MED: mNPS 1-20 = 2.0 microg, mNPS 1-19 = 0.0002 microg) and mNPS 1-20 increased baseline temperature. Unlike fluoxetine, NPS did not effect immobility time in TST, indicating a lack of antidepressant-like activity. CONCLUSIONS: These data provide an important confirmation and expansion of the anxiolytic-like effects of NPS and implicate the NPS system as a novel target for anxiolytic drug discovery.


Subject(s)
Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Anxiety Disorders/drug therapy , Anxiety/psychology , Disease Models, Animal , Neuropeptides/pharmacology , Neuropeptides/therapeutic use , Alprazolam/pharmacology , Alprazolam/therapeutic use , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Anxiety Disorders/psychology , Arousal/drug effects , Body Temperature Regulation/drug effects , Calcium/metabolism , Cell Line , Chlordiazepoxide/pharmacology , Chlordiazepoxide/therapeutic use , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Fear/drug effects , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Humans , In Vitro Techniques , Male , Maze Learning/drug effects , Mice , Motor Activity/drug effects , Oxytocin , Peptide Fragments/pharmacology , Peptide Fragments/therapeutic use , Receptors, Cell Surface/drug effects , Receptors, Cell Surface/physiology , Receptors, G-Protein-Coupled/drug effects , Receptors, G-Protein-Coupled/physiology , Structure-Activity Relationship
16.
Brain Res ; 1203: 68-78, 2008 Apr 08.
Article in English | MEDLINE | ID: mdl-18321472

ABSTRACT

Two distinct norepinephrine (NE) transporter mechanisms (uptake 1 and uptake 2) regulate extracellular NE concentrations. An association has been observed between the gradual improvement in patients treated with antidepressants that inhibit the NE transporter (NET/uptake 1) and increases in urinary normetanephrine, the O-methylated NE metabolite and potent inhibitor of uptake 2. These observations led to the hypothesis that increased levels of normetanephrine, and consequently inhibition of uptake 2, may partly be responsible for the clinical efficacy of some antidepressants. To investigate this hypothesis, we employed microdialysis techniques in the rat frontal cortex to monitor extracellular changes in normetanephrine following chronic administration of the clinically effective antidepressant, venlafaxine (a serotonin (5-HT) and NE reuptake inhibitor). We evaluated the neurochemical effects of inhibiting uptake 2 alone, or in conjunction with venlafaxine, on extracellular levels of NE and 5-HT. Chronic venlafaxine administration (14 days, 10 mg/kg, s.c.) elicited significant increases in cortical NE and 5-HT while producing a non-significant trend to increase cortical levels of normetanephrine. Additional studies revealed that combining normetanephrine with venlafaxine (10 mg/kg, i.p.), at a dose of normetanephrine (10 mg/kg, i.p.) that did not produce changes in extracellular levels of NE on its own, potentiated antidepressant-induced increases in extracellular NE. We also report mouse behavioral data involving the tail suspension test that complement the neurochemical observations. These preclinical findings, taken together, suggest that inhibiting both uptake 1 and uptake 2 via venlafaxine and normetanephrine, respectively, elicits a greater increase in cortical levels of NE than inhibiting either transporter alone.


Subject(s)
Brain Chemistry/drug effects , Cyclohexanols/pharmacology , Normetanephrine/metabolism , Normetanephrine/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Animals , Behavior, Animal/drug effects , Dose-Response Relationship, Drug , Drug Administration Schedule , Extracellular Fluid/drug effects , Extracellular Fluid/metabolism , Frontal Lobe/drug effects , Frontal Lobe/metabolism , Hindlimb Suspension/methods , Immobility Response, Tonic/drug effects , Male , Microdialysis , Norepinephrine/metabolism , Rats , Rats, Sprague-Dawley , Serotonin/metabolism , Venlafaxine Hydrochloride
17.
Eur J Pharmacol ; 580(3): 350-4, 2008 Feb 12.
Article in English | MEDLINE | ID: mdl-18177637

ABSTRACT

Selective serotonin uptake inhibitors (SSRIs) exert their effects by inhibiting serotonin (5-HT) re-uptake. Although blockade occurs almost immediately, the neurochemical effects on 5-HT, as measured by in vivo microdialysis, have been a matter of considerable debate. In particular, literature reports yield conflicting neurochemical results in the rat frontal cortex. Thus, while some groups consistently find increases in extracellular 5-HT levels following acute SSRI administration, others reproducibly report an absence of these acute serotonergic effects. In an attempt to unravel this apparent discrepancy, we combined published literature with in-house microdialysis experiments. When we plotted the lateral stereotaxic coordinate of the dialysis probe against published reports on the acute effects of fluoxetine a clear correlation was revealed. Whereas pronounced increases in SSRI-induced 5-HT were observed when the dialysis probe was placed 0 to 1 mm from the midline, effects diminished when the lateral probe placement was greater than 3 mm from the midline. In-house microdialysis studies corroborated these reports. Overall, these results illustrate - for the first time - that the midline stereotaxic coordinate is critical for interpreting the acute serotonergic effects of SSRIs within the frontal cortex. Moreover, the common observation that the clinical efficacy of SSRIs is not evident following acute administration complements preclinical microdialysis results in the lateral frontal cortex. The significance of this observation, along with potential explanations for the disparate neurochemical findings in the medial versus lateral cortices, will be discussed.


Subject(s)
Prefrontal Cortex/drug effects , Selective Serotonin Reuptake Inhibitors/pharmacology , Serotonin/metabolism , Animals , Chromatography, High Pressure Liquid , Drug Synergism , Fluoxetine/administration & dosage , Fluoxetine/pharmacology , Injections, Subcutaneous , Male , Microdialysis/methods , Piperazines/administration & dosage , Piperazines/pharmacology , Prefrontal Cortex/metabolism , Pyridines/administration & dosage , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Review Literature as Topic , Serotonin Antagonists/administration & dosage , Serotonin Antagonists/pharmacology
18.
Neuropsychopharmacology ; 33(6): 1323-35, 2008 May.
Article in English | MEDLINE | ID: mdl-17625499

ABSTRACT

One of the most recently identified serotonin (5-hydroxytryptamine (5-HT)) receptor subtypes is the 5-HT6 receptor. Although in-depth localization studies reveal an exclusive distribution of 5-HT6 mRNA in the central nervous system, the precise biological role of this receptor still remains unknown. In the present series of experiments, we report the pharmacological and neurochemical characterization of two novel and selective 5-HT6 receptor agonists. WAY-181187 and WAY-208466 possess high affinity binding (2.2 and 4.8 nM, respectively) at the human 5-HT6 receptor and profile as full receptor agonists (WAY-181187: EC50=6.6 nM, Emax=93%; WAY-208466: EC50=7.3 nM; Emax=100%). In the rat frontal cortex, acute administration of WAY-181187 (3-30 mg/kg, subcutaneous (s.c.)) significantly increased extracellular GABA concentrations without altering the levels of glutamate or norepinephrine. Additionally, WAY-181187 (30 mg/kg, s.c.) produced modest yet significant decreases in cortical dopamine and 5-HT levels. Subsequent studies showed that the neurochemical effects of WAY-181187 in the frontal cortex could be blocked by pretreatment with the 5-HT6 antagonist, SB-271046 (10 mg/kg, s.c.), implicating 5-HT6 receptor mechanisms in mediating these responses. Moreover, the effects of WAY-181187 on catecholamines were attenuated by an intracortical infusion of the GABA A receptor antagonist, bicuculline (10 microM), confirming a local relationship between 5-HT6 receptors and GABAergic systems in the frontal cortex. In the dorsal hippocampus, striatum, and amygdala, WAY-181187 (10-30 mg/kg, s.c.) elicited robust elevations in extracellular levels of GABA without producing similar effects on concentrations of norepinephrine, serotonin, dopamine, or glutamate. In contrast to these brain regions, WAY-181187 had no effect on the extracellular levels of GABA in the nucleus accumbens or thalamus. Additional studies showed that WAY-208466 (10 mg/kg, s.c.) preferentially elevated cortical GABA levels following both acute and chronic (14 day) administration, indicating that neurochemical tolerance does not develop following repeated 5-HT6 receptor stimulation. In hippocampal slice preparations (in vitro), 5-HT(6) receptor agonism attenuated stimulated glutamate levels elicited by sodium azide and high KCl treatment. Furthermore, in the rat schedule-induced polydipsia model of obsessive compulsive disorder (OCD), acute administration of WAY-181187 (56-178 mg/kg, po) decreased adjunctive drinking behavior in a dose-dependent manner. In summary, WAY-181187 and WAY-208466 are novel, selective, and potent 5-HT6 receptor agonists displaying a unique neurochemical signature in vivo. Moreover, these data highlight a previously undescribed role for 5-HT6 receptors to modulate basal GABA and stimulated glutamate transmission, as well as reveal a potential therapeutic role for this receptor in the treatment of some types of anxiety-related disorders (eg OCD).


Subject(s)
Brain/drug effects , Neuropharmacology , Receptors, Serotonin/metabolism , Serotonin Receptor Agonists/pharmacology , Amino Acids/metabolism , Analysis of Variance , Animals , Brain/anatomy & histology , Brain/metabolism , Brain Chemistry/drug effects , Chromatography, High Pressure Liquid/methods , Disease Models, Animal , Dose-Response Relationship, Drug , Drinking Behavior/drug effects , Drug Interactions , Humans , Ischemia/chemically induced , Ischemia/drug therapy , Male , Microdialysis/methods , Potassium Chloride , Protein Binding/drug effects , Rats , Rats, Sprague-Dawley , Sodium Azide
19.
J Med Chem ; 50(23): 5535-8, 2007 Nov 15.
Article in English | MEDLINE | ID: mdl-17948978

ABSTRACT

N1-Arylsulfonyltryptamines have been identified as 5-HT6 receptor ligands. In particular, N1-(6-chloroimidazo[2,1-b][1,3]thiazole-5-sulfonyl)tryptamine (11q) is a high affinity, potent full agonist (5-HT6 Ki = 2 nM, EC50 = 6.5 nM, Emax = 95.5%). Compound 11q is selective in a panel of over 40 receptors and ion channels, has good pharmacokinetic profile, has been shown to increase GABA levels in the rat frontal cortex, and is active in the schedule-induced polydipsia model for obsessive compulsive disorders.


Subject(s)
Receptors, Serotonin/metabolism , Serotonin Receptor Agonists/chemical synthesis , Thiazoles/chemistry , Tryptamines/chemical synthesis , Administration, Oral , Animals , Biological Availability , CHO Cells , Cricetinae , Cricetulus , Dogs , Frontal Lobe/metabolism , Haplorhini , Humans , In Vitro Techniques , Mice , Microdialysis , Microsomes, Liver/metabolism , Radioligand Assay , Rats , Serotonin Receptor Agonists/pharmacokinetics , Serotonin Receptor Agonists/pharmacology , Solubility , Structure-Activity Relationship , Thiazoles/pharmacokinetics , Thiazoles/pharmacology , Tryptamines/chemistry , Tryptamines/pharmacokinetics , Tryptamines/pharmacology , gamma-Aminobutyric Acid/metabolism
20.
Neuropeptides ; 41(5): 307-20, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17637475

ABSTRACT

Galanin's influence on monoaminergic neurotransmission, together with its discrete CNS distribution in corticolimbic brain areas, points to a potential role for this neuropeptide in mediating anxiety- and depression-like responses. To evaluate this hypothesis, the non-selective galanin receptor agonist, galnon, was tested in multiple preclinical models of anxiolytic- and antidepressive-like activity. Acute administration of galnon (0.03-1mg/kg, i.p.) dose-dependently increased punished crossings in the four plate test, with magnitude similar to the effects of the endogenous ligand, galanin (0.1-1.0 microg, i.c.v.). Moreover, the effects of galnon and galanin were blocked by central administration of the non-selective galanin receptor antagonist, M35 (10 microg, i.c.v.). Interestingly, the benzodiazepine receptor antagonist, flumazenil (1mg/kg, i.p.), reversed galnon's effect in the four plate test, implicating GABAergic neurotransmission as a potential mechanism underlying this anxiolytic-like response. In the elevated zero maze, galnon (0.3-3.0mg/kg, i.p.) and galanin (0.03-0.3 microg, i.c.v.) increased the time spent in the open arms, while in the stress-induced hyperthermia model, galnon (0.3-30 mg/kg, i.p.) attenuated stress-induced changes in body temperature. Consistent with these anxiolytic-like effects, in vivo microdialysis showed that acute galnon (3mg/kg, i.p.) treatment preferentially elevated levels of GABA in the rat amygdala, a brain area linked to fear and anxiety behaviors. In contrast to the effects in anxiety models, neither galnon (1-5.6 mg/kg, i.p.) nor galanin (0.3-3.0 microg, i.c.v.) demonstrated antidepressant-like effects in the mouse tail suspension test. Galnon (1-10mg/kg, i.p.) also failed to reduce immobility time in the rat forced swim test. In vitro, galnon and galanin showed affinity for human galanin receptors expressed in Bowes melanoma cells (K(i)=5.5 microM and 0.2 nM, respectively). Galanin displayed high affinity and functional potency for membranes expressing rat GALR1 receptors (K(i)=0.85 nM; EC(50)=0.6 nM), while galnon (10 microM) failed to displace radiolabeled galanin or inhibit cAMP production in the same GALR1 cell line. Galnon (10 microM) showed affinity for NPY1, NK2, M5, and somatostatin receptors but no affinity for galanin receptors expressed in rat hippocampal membranes. Taken together, the present series of studies demonstrate novel effects of galnon in various preclinical models of anxiety and highlight the galaninergic system as a novel therapeutic target for the treatment of anxiety-related disorders. Moreover, these data indicate rodent GALR1 receptors do not mediate galnon's in vivo activity.


Subject(s)
Anti-Anxiety Agents/pharmacology , Coumarins/pharmacology , Exploratory Behavior/physiology , Motivation , Receptors, Galanin/agonists , Animals , Body Temperature/drug effects , Dose-Response Relationship, Drug , Exploratory Behavior/drug effects , Habituation, Psychophysiologic , Male , Mice , Mice, Inbred BALB C , Microdialysis , Rats , Rats, Inbred WKY , Rats, Sprague-Dawley , Stress, Psychological/drug therapy , Swimming
SELECTION OF CITATIONS
SEARCH DETAIL
...