Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Hippocampus ; 26(12): 1493-1508, 2016 12.
Article in English | MEDLINE | ID: mdl-27479916

ABSTRACT

The entorhinal cortex (EC) is a critical component of the medial temporal lobe (MTL) memory system. Local networks within the MTL express a variety of state-dependent network oscillations that are believed to organize neuronal activity during memory formation. The peculiar pattern of sharp wave-ripple complexes (SPW-R) entrains neurons by a very fast oscillation at ∼200 Hz in the hippocampal areas CA3 and CA1 and then propagates through the "output loop" into the EC. The precise mechanisms of SPW-R propagation and the resulting cellular input patterns in the mEC are, however, largely unknown. We therefore investigated the activity of layer V (LV) principal neurons of the medial EC (mEC) during SPW-R oscillations in horizontal mouse brain slices. Intracellular recordings in the mEC were combined with extracellular monitoring of propagating network activity. SPW-R in CA1 were regularly followed by negative field potential deflections in the mEC. Propagation of SPW-R activity from CA1 to the mEC was mostly monosynaptic and excitatory, such that synaptic input to mEC LV neurons directly reflected unit activity in CA1. Comparison with propagating network activity from CA3 to CA1 revealed a similar role of excitatory long-range connections for both regions. However, SPW-R-induced activity in CA1 involved strong recruitment of rhythmic synaptic inhibition and corresponding fast field oscillations, in contrast to the mEC. These differences between features of propagating SPW-R emphasize the differential processing of network activity by each local network of the hippocampal output loop. © 2016 Wiley Periodicals, Inc.


Subject(s)
CA1 Region, Hippocampal/physiology , CA3 Region, Hippocampal/physiology , Entorhinal Cortex/physiology , Neurons/physiology , Animals , Brain Waves/drug effects , Brain Waves/physiology , CA1 Region, Hippocampal/drug effects , CA3 Region, Hippocampal/drug effects , Entorhinal Cortex/drug effects , Excitatory Postsynaptic Potentials/drug effects , Inhibitory Postsynaptic Potentials/drug effects , Male , Mice, Inbred C57BL , Microscopy, Fluorescence , Neurons/drug effects , Patch-Clamp Techniques , Tissue Culture Techniques
3.
Mol Plant Pathol ; 3(6): 473-85, 2002 Nov 01.
Article in English | MEDLINE | ID: mdl-20569354

ABSTRACT

SUMMARY Suppression Subtractive Hybridization (SSH) was used to search for genes of Phytophthora infestans that are induced during the infection of potato. To avoid having to distinguish the genes of the pathogen from the plant genes involved in defence responses and to isolate the genes involved in the early stages of interaction, mycelium of P. infestans was induced by contact with the host plant and then separated from the plant tissue. A differential cDNA library was generated by SSH that compared such induced mycelium with mycelium incubated in water. The expression of about 100 cDNA fragments from this differential cDNA library was analysed by hybridization of the arrayed PCR products with mRNA from control and induced mycelium. Twenty per cent of them showed increased transcript levels in mycelium within the first 24 h after exposure to a potato leaf. For six of these cDNA clones the elevated expression in response to the potato leaf could be proven by RNA gel blot analysis. Five of these cDNA clones have predicted amino acid sequence homologies to entries in the databases, including an amino acid transporter, a sucrose transporter, a spliceosome-associated factor, an ABC transporter, and a cell division control protein. We showed that the genes corresponding to these six cDNA clones are differentially regulated during their life. Reliable gene expression analysis of Phytophthora in infected leaf tissue is not possible until c. 48 h post-infection, but for two of the genes we identified, induction during in planta growth was detectable by RNA gel blot analysis. Therefore the SSH library that we have created provides a basis for the identification of P. infestans genes that are up-regulated during the interaction with the plant, which could be important for pathogenicity.

SELECTION OF CITATIONS
SEARCH DETAIL