Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Science ; 367(6481)2020 02 28.
Article in English | MEDLINE | ID: mdl-32054694

ABSTRACT

The Cold Classical Kuiper Belt, a class of small bodies in undisturbed orbits beyond Neptune, is composed of primitive objects preserving information about Solar System formation. In January 2019, the New Horizons spacecraft flew past one of these objects, the 36-kilometer-long contact binary (486958) Arrokoth (provisional designation 2014 MU69). Images from the flyby show that Arrokoth has no detectable rings, and no satellites (larger than 180 meters in diameter) within a radius of 8000 kilometers. Arrokoth has a lightly cratered, smooth surface with complex geological features, unlike those on previously visited Solar System bodies. The density of impact craters indicates the surface dates from the formation of the Solar System. The two lobes of the contact binary have closely aligned poles and equators, constraining their accretion mechanism.

2.
Science ; 364(6441)2019 05 17.
Article in English | MEDLINE | ID: mdl-31097641

ABSTRACT

The Kuiper Belt is a distant region of the outer Solar System. On 1 January 2019, the New Horizons spacecraft flew close to (486958) 2014 MU69, a cold classical Kuiper Belt object approximately 30 kilometers in diameter. Such objects have never been substantially heated by the Sun and are therefore well preserved since their formation. We describe initial results from these encounter observations. MU69 is a bilobed contact binary with a flattened shape, discrete geological units, and noticeable albedo heterogeneity. However, there is little surface color or compositional heterogeneity. No evidence for satellites, rings or other dust structures, a gas coma, or solar wind interactions was detected. MU69's origin appears consistent with pebble cloud collapse followed by a low-velocity merger of its two lobes.

3.
Astrobiology ; 19(7): 831-848, 2019 07.
Article in English | MEDLINE | ID: mdl-30907634

ABSTRACT

We present the case for the presence of complex organic molecules, such as amino acids and nucleobases, formed by abiotic processes on the surface and in near-subsurface regions of Pluto. Pluto's surface is tinted with a range of non-ice substances with colors ranging from light yellow to red to dark brown; the colors match those of laboratory organic residues called tholins. Tholins are broadly characterized as complex, macromolecular organic solids consisting of a network of aromatic structures connected by aliphatic bridging units (e.g., Imanaka et al., 2004; Materese et al., 2014, 2015). The synthesis of tholins in planetary atmospheres and in surface ices has been explored in numerous laboratory experiments, and both gas- and solid-phase varieties are found on Pluto. A third variety of tholins, exposed at a site of tectonic surface fracturing called Virgil Fossae, appears to have come from a reservoir in the subsurface. Eruptions of tholin-laden liquid H2O from a subsurface aqueous repository appear to have covered portions of Virgil Fossae and its surroundings with a uniquely colored deposit (D.P. Cruikshank, personal communication) that is geographically correlated with an exposure of H2O ice that includes spectroscopically detected NH3 (C.M. Dalle Ore, personal communication). The subsurface organic material could have been derived from presolar or solar nebula processes, or might have formed in situ. Photolysis and radiolysis of a mixture of ices relevant to Pluto's surface composition (N2, CH4, CO) have produced strongly colored, complex organics with a significant aromatic content having a high degree of nitrogen substitution similar to the aromatic heterocycles pyrimidine and purine (Materese et al., 2014, 2015; Cruikshank et al., 2016). Experiments with pyrimidines and purines frozen in H2O-NH3 ice resulted in the formation of numerous nucleobases, including the biologically relevant guanine, cytosine, adenine, uracil, and thymine (Materese et al., 2017). The red material associated with the H2O ice may contain nucleobases resulting from energetic processing on Pluto's surface or in the interior. Some other Kuiper Belt objects also exhibit red colors similar to those found on Pluto and may therefore carry similar inventories of complex organic materials. The widespread and ubiquitous nature of similarly complex organic materials observed in a variety of astronomical settings drives the need for additional laboratory and modeling efforts to explain the origin and evolution of organic molecules. Pluto observations reveal complex organics on a small body that remains close to its place of origin in the outermost regions of the Solar System.


Subject(s)
Atmosphere/analysis , Extraterrestrial Environment/chemistry , Pluto , Purines/analysis , Pyrimidines/analysis , Atmosphere/chemistry , Ice , Methane/analysis , Spectrophotometry, Infrared , Volatile Organic Compounds/analysis , Water/chemistry
4.
Science ; 363(6430): 955-959, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30819958

ABSTRACT

The flyby of Pluto and Charon by the New Horizons spacecraft provided high-resolution images of cratered surfaces embedded in the Kuiper belt, an extensive region of bodies orbiting beyond Neptune. Impact craters on Pluto and Charon were formed by collisions with other Kuiper belt objects (KBOs) with diameters from ~40 kilometers to ~300 meters, smaller than most KBOs observed directly by telescopes. We find a relative paucity of small craters ≲13 kilometers in diameter, which cannot be explained solely by geological resurfacing. This implies a deficit of small KBOs (≲1 to 2 kilometers in diameter). Some surfaces on Pluto and Charon are likely ≳4 billion years old, thus their crater records provide information on the size-frequency distribution of KBOs in the early Solar System.

5.
Nature ; 540(7631): 94-96, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27851735

ABSTRACT

The deep nitrogen-covered basin on Pluto, informally named Sputnik Planitia, is located very close to the longitude of Pluto's tidal axis and may be an impact feature, by analogy with other large basins in the Solar System. Reorientation of Sputnik Planitia arising from tidal and rotational torques can explain the basin's present-day location, but requires the feature to be a positive gravity anomaly, despite its negative topography. Here we argue that if Sputnik Planitia did indeed form as a result of an impact and if Pluto possesses a subsurface ocean, the required positive gravity anomaly would naturally result because of shell thinning and ocean uplift, followed by later modest nitrogen deposition. Without a subsurface ocean, a positive gravity anomaly requires an implausibly thick nitrogen layer (exceeding 40 kilometres). To prolong the lifetime of such a subsurface ocean to the present day and to maintain ocean uplift, a rigid, conductive water-ice shell is required. Because nitrogen deposition is latitude-dependent, nitrogen loading and reorientation may have exhibited complex feedbacks.

6.
Nature ; 539(7627): 65-68, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27626378

ABSTRACT

A unique feature of Pluto's large satellite Charon is its dark red northern polar cap. Similar colours on Pluto's surface have been attributed to tholin-like organic macromolecules produced by energetic radiation processing of hydrocarbons. The polar location on Charon implicates the temperature extremes that result from Charon's high obliquity and long seasons in the production of this material. The escape of Pluto's atmosphere provides a potential feedstock for a complex chemistry. Gas from Pluto that is transiently cold-trapped and processed at Charon's winter pole was proposed as an explanation for the dark coloration on the basis of an image of Charon's northern hemisphere, but not modelled quantitatively. Here we report images of the southern hemisphere illuminated by Pluto-shine and also images taken during the approach phase that show the northern polar cap over a range of longitudes. We model the surface thermal environment on Charon and the supply and temporary cold-trapping of material escaping from Pluto, as well as the photolytic processing of this material into more complex and less volatile molecules while cold-trapped. The model results are consistent with the proposed mechanism for producing the observed colour pattern on Charon.

7.
Science ; 351(6279): aae0030, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26989256

ABSTRACT

The New Horizons mission has provided resolved measurements of Pluto's moons Styx, Nix, Kerberos, and Hydra. All four are small, with equivalent spherical diameters of ~40 kilometers for Nix and Hydra and ~10 kilometers for Styx and Kerberos. They are also highly elongated, with maximum to minimum axis ratios of ~2. All four moons have high albedos (~50 to 90%) suggestive of a water-ice surface composition. Crater densities on Nix and Hydra imply surface ages of at least 4 billion years. The small moons rotate much faster than synchronous, with rotational poles clustered nearly orthogonal to the common pole directions of Pluto and Charon. These results reinforce the hypothesis that the small moons formed in the aftermath of a collision that produced the Pluto-Charon binary.

8.
Science ; 351(6279): aad9189, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26989260

ABSTRACT

The New Horizons spacecraft mapped colors and infrared spectra across the encounter hemispheres of Pluto and Charon. The volatile methane, carbon monoxide, and nitrogen ices that dominate Pluto's surface have complicated spatial distributions resulting from sublimation, condensation, and glacial flow acting over seasonal and geological time scales. Pluto's water ice "bedrock" was also mapped, with isolated outcrops occurring in a variety of settings. Pluto's surface exhibits complex regional color diversity associated with its distinct provinces. Charon's color pattern is simpler, dominated by neutral low latitudes and a reddish northern polar region. Charon's near-infrared spectra reveal highly localized areas with strong ammonia absorption tied to small craters with relatively fresh-appearing impact ejecta.

9.
Science ; 350(6258): aad1815, 2015 Oct 16.
Article in English | MEDLINE | ID: mdl-26472913

ABSTRACT

The Pluto system was recently explored by NASA's New Horizons spacecraft, making closest approach on 14 July 2015. Pluto's surface displays diverse landforms, terrain ages, albedos, colors, and composition gradients. Evidence is found for a water-ice crust, geologically young surface units, surface ice convection, wind streaks, volatile transport, and glacial flow. Pluto's atmosphere is highly extended, with trace hydrocarbons, a global haze layer, and a surface pressure near 10 microbars. Pluto's diverse surface geology and long-term activity raise fundamental questions about how small planets remain active many billions of years after formation. Pluto's large moon Charon displays tectonics and evidence for a heterogeneous crustal composition; its north pole displays puzzling dark terrain. Small satellites Hydra and Nix have higher albedos than expected.

10.
Neurology ; 36(9): 1173-8, 1986 Sep.
Article in English | MEDLINE | ID: mdl-3748382

ABSTRACT

We studied three children who suffered massive strokes 2 to 5 years after intracranial irradiation of optic chiasm gliomas. Arteriography showed moyamoya changes in all three. CTs showed dramatic reduction in tumor size in two patients, but we believe radiotherapy should only be used sparingly to treat optic chiasm gliomas in young children, because its efficacy is unproven, and side effects may be catastrophic.


Subject(s)
Arterial Occlusive Diseases/diagnostic imaging , Cranial Nerve Neoplasms/radiotherapy , Glioma/radiotherapy , Optic Chiasm , Cerebral Arteries , Child, Preschool , Female , Humans , Infant , Male , Radiography
11.
Appl Opt ; 22(13): 1976, 1983 Jul 01.
Article in English | MEDLINE | ID: mdl-18196065
13.
Dent Econ ; 70(1): 35-8, 1980 Jan.
Article in English | MEDLINE | ID: mdl-6934124
14.
Dent Econ ; 67(5): 36-8, 1977 May.
Article in English | MEDLINE | ID: mdl-269829
15.
Dent Econ ; 67(4): 50-4, 1977 Apr.
Article in English | MEDLINE | ID: mdl-273548

Subject(s)
Dentists , Taxes
16.
Dent Econ ; 67(3): 89-92, 1977 Mar.
Article in English | MEDLINE | ID: mdl-274417

Subject(s)
Taxes
17.
Dent Econ ; 67(2): 23-8, 1977 Feb.
Article in English | MEDLINE | ID: mdl-274401

Subject(s)
Dentists , Income Tax
18.
Dent Econ ; 67(1): 33-4, 36, 39, 1977 Jan.
Article in English | MEDLINE | ID: mdl-264837
19.
Dent Econ ; 66(12): 21-2, 24, 26, 1976 Dec.
Article in English | MEDLINE | ID: mdl-1069664

Subject(s)
Income Tax , Dentists
20.
Dent Econ ; 66(11): 23-32, 1976 Nov.
Article in English | MEDLINE | ID: mdl-1074708
SELECTION OF CITATIONS
SEARCH DETAIL
...