Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 17(10): 5908-5913, 2017 10 11.
Article in English | MEDLINE | ID: mdl-28809573

ABSTRACT

As a two-dimensional semimetal, graphene offers clear advantages for plasmonic applications over conventional metals, such as stronger optical field confinement, in situ tunability, and relatively low intrinsic losses. However, the operational frequencies at which plasmons can be excited in graphene are limited by the Fermi energy EF, which in practice can be controlled electrostatically only up to a few tenths of an electronvolt. Higher Fermi energies open the door to novel plasmonic devices with unprecedented capabilities, particularly at mid-infrared and shorter-wave infrared frequencies. In addition, this grants us a better understanding of the interaction physics of intrinsic graphene phonons with graphene plasmons. Here, we present FeCl3-intercalated graphene as a new plasmonic material with high stability under environmental conditions and carrier concentrations corresponding to EF > 1 eV. Near-field imaging of this highly doped form of graphene allows us to characterize plasmons, including their corresponding lifetimes, over a broad frequency range. For bilayer graphene, in contrast to the monolayer system, a phonon-induced dipole moment results in increased plasmon damping around the intrinsic phonon frequency. Strong coupling between intrinsic graphene phonons and plasmons is found, supported by ab initio calculations of the coupling strength, which are in good agreement with the experimental data.

2.
Sci Rep ; 6: 32959, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27622525

ABSTRACT

Polar dielectrics have garnered much attention as an alternative to plasmonic metals in the mid- to long-wave infrared spectral regime due to their low optical losses. As such, nanoscale resonators composed of these materials demonstrate figures of merit beyond those achievable in plasmonic equivalents. However, until now, only low-order, phonon-mediated, localized polariton resonances, known as surface phonon polaritons (SPhPs), have been observed in polar dielectric optical resonators. In the present work, we investigate the excitation of 16 distinct high-order, multipolar, localized surface phonon polariton resonances that are optically excited in rectangular pillars etched into a semi-insulating silicon carbide substrate. By elongating a single pillar axis we are able to significantly modify the far- and near-field properties of localized SPhP resonances, opening the door to realizing narrow-band infrared sources with tailored radiation patterns. Such control of the near-field behavior of resonances can also impact surface enhanced infrared optical sensing, which is mediated by polarization selection rules, as well as the morphology and strength of resonator hot spots. Furthermore, through the careful choice of polar dielectric material, these results can also serve as the guiding principles for the generalized design of optical devices that operate from the mid- to far-infrared.

3.
Anal Chem ; 86(24): 12315-20, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25383912

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) is generally performed on planar surfaces, which can be difficult to prepare and may limit the interaction of the sensing surface with targets in large volume samples. We propose that nanocomposite materials can be configured that both include SERS probes and provide a high surface area-to-volume format, i.e., fibers. Thiol-yne nanocomposite films and fibers were fabricated using exposure to long-wave ultraviolet light after the inclusion of gold nanoparticles (AuNPs) functionalized with thiophenol. A SERS response was observed that was proportional to the aggregation of the AuNPs within the polymers and the amount of thiophenol present. Overall, this proof-of-concept fabrication of SERS active polymers indicated that thiol-yne nanocomposites may be useful as durable film or fiber SERS probes. Properties of the nanocomposites were evaluated using various techniques including UV-vis spectroscopy, µ-Raman spectroscopy, dynamic mechanical analysis, differential scanning calorimetry, thermogravimetric analysis, and transmission electron microscopy.


Subject(s)
Nanocomposites , Spectrum Analysis, Raman/methods , Sulfhydryl Compounds/chemistry , Spectrophotometry, Ultraviolet , Surface Properties
4.
Nano Lett ; 13(8): 3690-7, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23815389

ABSTRACT

Plasmonics provides great promise for nanophotonic applications. However, the high optical losses inherent in metal-based plasmonic systems have limited progress. Thus, it is critical to identify alternative low-loss materials. One alternative is polar dielectrics that support surface phonon polariton (SPhP) modes, where the confinement of infrared light is aided by optical phonons. Using fabricated 6H-silicon carbide nanopillar antenna arrays, we report on the observation of subdiffraction, localized SPhP resonances. They exhibit a dipolar resonance transverse to the nanopillar axis and a monopolar resonance associated with the longitudinal axis dependent upon the SiC substrate. Both exhibit exceptionally narrow linewidths (7-24 cm(-1)), with quality factors of 40-135, which exceed the theoretical limit of plasmonic systems, with extreme subwavelength confinement of (λ(res)3/V(eff))1/3 = 50-200. Under certain conditions, the modes are Raman-active, enabling their study in the visible spectral range. These observations promise to reinvigorate research in SPhP phenomena and their use for nanophotonic applications.

5.
ACS Nano ; 7(6): 4746-55, 2013 Jun 25.
Article in English | MEDLINE | ID: mdl-23659463

ABSTRACT

This work demonstrates the production of a well-controlled, chemical gradient on the surface of graphene. By inducing a gradient of oxygen functional groups, drops of water and dimethyl-methylphosphonate (a nerve agent simulant) are "pulled" in the direction of increasing oxygen content, while fluorine gradients "push" the droplet motion in the direction of decreasing fluorine content. The direction of motion is broadly attributed to increasing/decreasing hydrophilicity, which is correlated to high/low adhesion and binding energy. Such tunability in surface chemistry provides additional capabilities in device design for applications ranging from microfluidics to chemical sensing.


Subject(s)
Graphite/chemistry , Motion , Fluorine/chemistry , Models, Molecular , Molecular Conformation , Organophosphorus Compounds/chemistry , Oxygen/chemistry , Surface Properties , Water/chemistry
6.
Opt Express ; 21(23): 27587-601, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24514277

ABSTRACT

Mie-resonances in vertical, small aspect-ratio and subwavelength silicon nanopillars are investigated using visible bright-field µ-reflection measurements and Raman scattering. Pillar-to-pillar interactions were examined by comparing randomly to periodically arranged arrays with systematic variations in nanopillar diameter and array pitch. First- and second-order Mie resonances are observed in reflectance spectra as pronounced dips with minimum reflectances of several percent, suggesting an alternative approach to fabricating a perfect absorber. The resonant wavelengths shift approximately linearly with nanopillar diameter, which enables a simple empirical description of the resonance condition. In addition, resonances are also significantly affected by array density, with an overall oscillating blue shift as the pitch is reduced. Finite-element method and finite-difference time-domain simulations agree closely with experimental results and provide valuable insight into the nature of the dielectric resonance modes, including a surprisingly small influence of the substrate on resonance wavelength. To probe local fields within the Si nanopillars, µ-Raman scattering measurements were also conducted that confirm enhanced optical fields in the pillars when excited on-resonance.

7.
Small ; 8(14): 2239-49, 2012 Jul 23.
Article in English | MEDLINE | ID: mdl-22528745

ABSTRACT

Near-field plasmonic coupling and local field enhancement in metal nanoarchitectures, such as arrangements of nanoparticle clusters, have application in many technologies from medical diagnostics, solar cells, to sensors. Although nanoparticle-based cluster assemblies have exhibited signal enhancements in surface-enhanced Raman scattering (SERS) sensors, it is challenging to achieve high reproducibility in SERS response using low-cost fabrication methods. Here an innovative method is developed for fabricating self-organized clusters of metal nanoparticles on diblock copolymer thin films as SERS-active structures. Monodisperse, colloidal gold nanoparticles are attached via a crosslinking reaction on self-organized chemically functionalized poly(methyl methacrylate) domains on polystyrene-block-poly(methyl methacrylate) templates. Thereby nanoparticle clusters with sub-10-nanometer interparticle spacing are achieved. Varying the molar concentration of functional chemical groups and crosslinking agent during the assembly process is found to affect the agglomeration of Au nanoparticles into clusters. Samples with a high surface coverage of nanoparticle cluster assemblies yield relative enhancement factors on the order of 109 while simultaneously producing uniform signal enhancements in point-to-point measurements across each sample. High enhancement factors are associated with the narrow gap between nanoparticles assembled in clusters in full-wave electromagnetic simulations. Reusability for small-molecule detection is also demonstrated. Thus it is shown that the combination of high signal enhancement and reproducibility is achievable using a completely non-lithographic fabrication process, thereby producing SERS substrates having high performance at low cost.

8.
ACS Nano ; 5(5): 4046-55, 2011 May 24.
Article in English | MEDLINE | ID: mdl-21480637

ABSTRACT

Efforts to create reproducible surface-enhanced Raman scattering (SERS)-based chemical and biological sensors has been hindered by difficulties in fabricating large-area SERS-active substrates with a uniform, reproducible SERS response that still provides sufficient enhancement for easy detection. Here we report on periodic arrays of Au-capped, vertically aligned silicon nanopillars that are embedded in a Au plane upon a Si substrate. We illustrate that these arrays are ideal for use as SERS sensor templates, in that they provide large, uniform and reproducible average enhancement factors up to ∼1.2 × 10(8) over the structure surface area. We discuss the impact of the overall geometry of the structures upon the SERS response at 532, 633, and 785 nm incident laser wavelengths. Calculations of the electromagnetic field distributions and intensities within such structures were performed and both the wavelength dependence of the predicted SERS response and the field distribution within the nanopillar structure are discussed and support the experimental results we report.


Subject(s)
Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/instrumentation , Surface Plasmon Resonance/instrumentation , Transducers , Equipment Design , Equipment Failure Analysis , Light , Molecular Conformation , Particle Size , Scattering, Radiation
9.
Opt Express ; 19(27): 26056-64, 2011 Dec 19.
Article in English | MEDLINE | ID: mdl-22274194

ABSTRACT

Initial reports of plasmonic 'hot-spots' enabled the detection of single molecules via surface-enhanced Raman scattering (SERS) from random distributions of plasmonic nanoparticles. Investigations of systems with near-field plasmonically coupled nanoparticles began, however, the ability to fabricate reproducible arrays of such particles has been lacking. We report on the fabrication of large-area, periodic arrays of plasmonic 'hot-spots' using Ag atomic layer deposition to overcoat Si nanopillar templates leading to reproducible interpillar gaps down to <2 nm. These plasmonic 'hot-spots' arrays exhibited over an order of magnitude increase in the SERS response in comparison to similar arrays with larger interpillar separations.


Subject(s)
Gold/chemistry , Molecular Probe Techniques , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Silicon/chemistry , Surface Plasmon Resonance/methods
SELECTION OF CITATIONS
SEARCH DETAIL