Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Hum Genet ; 31(5): 602-606, 2023 05.
Article in English | MEDLINE | ID: mdl-36797466

ABSTRACT

Germline structural variants (SVs) are challenging to resolve by conventional genetic testing assays. Long-read sequencing has improved the global characterization of SVs, but its sensitivity at cancer susceptibility loci has not been reported. Nanopore long-read genome sequencing was performed for nineteen individuals with pathogenic copy number alterations in BRCA1, BRCA2, CHEK2 and PALB2 identified by prior clinical testing. Fourteen variants, which spanned single exons to whole genes and included a tandem duplication, were accurately represented. Defining the precise breakpoints of SVs in BRCA1 and CHEK2 revealed unforeseen allelic heterogeneity and informed the mechanisms underlying the formation of recurrent deletions. Integrating read-based and statistical phasing further helped define extended haplotypes associated with founder alleles. Long-read sequencing is a sensitive method for characterizing private, recurrent and founder SVs underlying breast cancer susceptibility. Our findings demonstrate the potential for nanopore sequencing as a powerful genetic testing assay in the hereditary cancer setting.


Subject(s)
Breast Neoplasms , Nanopore Sequencing , Nanopores , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Genetic Predisposition to Disease , Genetic Testing/methods
2.
Clin Transl Gastroenterol ; 12(8): e00397, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34397043

ABSTRACT

INTRODUCTION: Uninformative germline genetic testing presents a challenge to clinical management for patients suspected to have Lynch syndrome, a cancer predisposition syndrome caused by germline variants in the mismatch repair (MMR) genes or EPCAM. METHODS: Among a consecutive series of MMR-deficient Lynch syndrome spectrum cancers identified through immunohistochemistry-based tumor screening, we investigated the clinical utility of tumor sequencing for the molecular diagnosis and management of suspected Lynch syndrome families. MLH1-deficient colorectal cancers were prescreened for BRAF V600E before referral for genetic counseling. Microsatellite instability, MLH1 promoter hypermethylation, and somatic and germline genetic variants in the MMR genes were assessed according to an established clinical protocol. RESULTS: Eighty-four individuals with primarily colorectal (62%) and endometrial (31%) cancers received tumor-normal sequencing as part of routine clinical genetic assessment. Overall, 27% received a molecular diagnosis of Lynch syndrome. Most of the MLH1-deficient tumors were more likely of sporadic origin, mediated by MLH1 promoter hypermethylation in 54% and double somatic genetic alterations in MLH1 (17%). MSH2-deficient, MSH6-deficient, and/or PMS2-deficient tumors could be attributed to pathogenic germline variants in 37% and double somatic events in 28%. Notably, tumor sequencing could explain 49% of cases without causal germline variants, somatic MLH1 promoter hypermethylation, or somatic variants in BRAF. DISCUSSION: Our findings support the integration of tumor sequencing into current Lynch syndrome screening programs to improve clinical management for individuals whose germline testing is uninformative.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Mismatch Repair , Germ-Line Mutation , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , DNA Methylation , Epithelial Cell Adhesion Molecule/genetics , Female , Humans , Male , Microsatellite Instability , Middle Aged , MutL Protein Homolog 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...