Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Addit Manuf ; 842024 Mar.
Article in English | MEDLINE | ID: mdl-38567361

ABSTRACT

The working curve informs resin properties and print parameters for stereolithography, digital light processing, and other photopolymer additive manufacturing (PAM) technologies. First demonstrated in 1992, the working curve measurement of cure depth vs radiant exposure of light is now a foundational measurement in the field of PAM. Despite its widespread use in industry and academia, there is no formal method or procedure for performing the working curve measurement, raising questions about the utility of reported working curve parameters. Here, an interlaboratory study (ILS) is described in which 24 individual laboratories performed a working curve measurement on an aliquot from a single batch of PAM resin. The ILS reveals that there is enormous scatter in the working curve data and the key fit parameters derived from it. The measured depth of light penetration Dp varied by as much as 7x between participants, while the critical radiant exposure for gelation Ec varied by as much as 70x. This significant scatter is attributed to a lack of common procedure, variation in light engines, epistemic uncertainties from the Jacobs equation, and the use of measurement tools with insufficient precision. The ILS findings highlight an urgent need for procedural standardization and better hardware characterization in this rapidly growing field.

2.
Int J Mol Sci ; 24(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37108799

ABSTRACT

Due to increased environmental pressures, significant research has focused on finding suitable biodegradable plastics to replace ubiquitous petrochemical-derived polymers. Polyhydroxyalkanoates (PHAs) are a class of polymers that can be synthesized by microorganisms and are biodegradable, making them suitable candidates. The present study looks at the degradation properties of two PHA polymers: polyhydroxybutyrate (PHB) and polyhydroxybutyrate-co-polyhydroxyvalerate (PHBV; 8 wt.% valerate), in two different soil conditions: soil fully saturated with water (100% relative humidity, RH) and soil with 40% RH. The degradation was evaluated by observing the changes in appearance, chemical signatures, mechanical properties, and molecular weight of samples. Both PHB and PHBV were degraded completely after two weeks in 100% RH soil conditions and showed significant reductions in mechanical properties after just three days. The samples in 40% RH soil, however, showed minimal changes in mechanical properties, melting temperatures/crystallinity, and molecular weight over six weeks. By observing the degradation behavior for different soil conditions, these results can pave the way for identifying situations where the current use of plastics can be replaced with biodegradable alternatives.


Subject(s)
Biodegradable Plastics , Polyhydroxyalkanoates , Polyesters/chemistry , Soil , Polyhydroxyalkanoates/chemistry , Biodegradation, Environmental
3.
Membranes (Basel) ; 13(1)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36676882

ABSTRACT

Polyvinylidene fluoride (PVDF) dual-layer hollow fiber membranes were simultaneously fabricated by thermally induced phase separation (TIPS) and non-solvent induced phase separation (NIPS) methods using a triple orifice spinneret (TOS) for water treatment application. The support layer was prepared from a TIPS dope solution, which was composed of PVDF, gamma-butyrolactone (GBL), and N-methyl-2-pyrrolidone (NMP). The coating layer was prepared from a NIPS dope solution, which was composed of PVDF, N,N-dimethylacetamide (DMAc), and polyvinylpyrrolidone (PVP). In order to improve the mechanical strength of the dual-layer hollow fiber, a nucleating agent, sodium 2,2'-methylene bis-(4,6-di-tert-butylphenyl) phosphate (NA11), was added to the TIPS dope solution. The performance of the membrane was evaluated by surface and cross-sectional morphology, water flux, mechanical strength, and thermal property. Our results demonstrate that NA11 improved the mechanical strength of the PVDF dual-layer hollow fiber membranes by up to 42%. In addition, the thickness of the coating layer affected the porosity of the membrane and mechanical performance to have high durability in enduring harsh processing conditions.

4.
J Mech Behav Biomed Mater ; 125: 104938, 2022 01.
Article in English | MEDLINE | ID: mdl-34740012

ABSTRACT

Capitalizing on features including high resolution, smooth surface finish, large build volume, and simultaneous multi-color/multi-material printing, material jetting additive manufacturing enables the fabrication of full-scale anatomic models. The ability to print materials that resemble relevant, compliant tissues has especially motivated implementation of material jetting for patient-specific surgical planning or training models. In an effort to broaden the material selection for the material jetting process, and to provide materials that more closely mimic the functional needs for a wider variety of tissues, a composite material system is explored that uses non-curing fluid dispersed into a photo-curable medium. The material properties of the composites are examined through both thermal and mechanical analysis (dynamic mechanical analysis, Shore hardness testing, puncture testing, and tensile testing). Higher contributions of non-curing fluid generally reduce part strength and stiffness, and exponential and second-order polynomial expressions are appropriate fits for many of the mechanical properties as functions of non-curing fluid concentration. Through the fundamental exploration of the impact of an added diluent on material properties, the study advances knowledge on the process-property relationship for multi-material jetting. Additionally, better understanding of the mechanical property space offered by these materials will expand the capabilities of material jetting in the context of biomedical applications. The collection of mechanical properties serve as reference data sets to facilitate quicker screening for tissue-mimicking, medical models.

5.
J Manuf Syst ; 60: 762-773, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33551537

ABSTRACT

The COVID-19 pandemic has disrupted the supply chain for personal protective equipment (PPE) for medical professionals, including N95-type respiratory protective masks. To address this shortage, many have looked to the agility and accessibility of additive manufacturing (AM) systems to provide a democratized, decentralized solution to producing respirators with equivalent protection for last-resort measures. However, there are concerns about the viability and safety in deploying this localized download, print, and wear strategy due to a lack of commensurate quality assurance processes. Many open-source respirator designs for AM indicate that they do not provide N95-equivalent protection (filtering 95% of SARS-CoV-2 particles) because they have either not passed aerosol generation tests or not been tested. Few studies have quantified particle transmission through respirator designs outside of the filter medium. This is concerning because several polymer-based AM processes produce porous parts, and inherent process variation between printers and materials also threaten the integrity of tolerances and seals within the printed respirator assembly. No study has isolated these failure mechanisms specifically for respirators. The goal of this paper is to measure particle transmission through printed respirators of different designs, materials, and AM processes. The authors compare the performance of printed respirators to N95 respirators and cloth masks. Respirators in this study printed using desktop- and industrial-scale fused filament fabrication processes and industrial-scale powder bed fusion processes were not sufficiently reliable for widespread distribution and local production of N95-type respiratory protection. Even while assuming a perfect seal between the respirator and the user's face, although a few respirators provided >90% efficiency at the 100-300 nm particle range, almost all printed respirators provided <60% filtration efficiency. Post-processing procedures including cleaning, sealing surfaces, and reinforcing the filter cap seal generally improved performance, but the printed respirators showed similar performance to various cloth masks. The authors further explore the process-driven aspects leading to low filtration efficiency. Although the design/printer/material combination dictates the AM respirator performance, the identified failure modes originate from system-level constraints and are therefore generalizable across multiple AM processes. Quantifying the limitations of AM in producing N95-type respiratory protective masks advances understanding of AM systems toward the development of better part and machine designs to meet the needs of reliable, functional, end-use parts.

6.
J Mech Behav Biomed Mater ; 110: 103971, 2020 10.
Article in English | MEDLINE | ID: mdl-32763836

ABSTRACT

Applications of additive manufacturing (commonly referred to as 3D printing) in direct fabrication of models for pre-surgical planning, functional testing, and medical training are on the rise. However, one current limitation to the accuracy of models for cardiovascular procedural training is a lack of printable materials that accurately mimic human tissue. Most of the available elastomeric materials lack mechanical properties representative of human tissues. To address the gap, the authors explore the multi-material capability of material jetting additive manufacturing to combine non-curing and photo-curing inks to achieve material properties that more closely replicate human tissues. The authors explore the impact of relative material concentration on tissue-relevant properties from puncture and tensile testing under submerged conditions. Further, the authors demonstrate the ability to mimic the mechanical properties of the fossa ovalis, which proves beneficial for accurately simulating transseptal punctures. A fossa ovalis mimic was printed and assembled within a full patient-specific heart model for validation, where it exhibited accuracy in both mechanical properties and geometry. The explored material combination provides the opportunity to fabricate future medical models that are more realistic and better suited for pre-surgical planning and medical student training. This will ultimately guide safer, more efficient practices.


Subject(s)
Printing, Three-Dimensional , Punctures , Humans , Ink
SELECTION OF CITATIONS
SEARCH DETAIL
...