Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 204
Filter
1.
J Am Coll Cardiol ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38759907

ABSTRACT

BACKGROUND: ILUMIEN IV was the first large-scale, multicenter, randomized trial comparing optical coherence tomography (OCT)-guided versus angiography-guided stent implantation in patients with high-risk clinical characteristics and/or complex angiographic lesions. OBJECTIVE: Here, we aimed to specifically examine outcomes in the complex angiographic lesions subgroup. METHODS: From the original trial population (n=2487), high-risk patients without complex angiographic lesions were excluded (n=514). Complex angiographic lesion characteristics included 1) long or multiple lesions with intended total stent length ≥28 mm; 2) bifurcation lesion with intended two-stent strategy; 3) severely calcified lesion; 4) chronic total occlusion; or 5) in-stent restenosis. The study endpoints were 1) final minimal stent area (MSA); 2) 2-year composite of serious major adverse cardiovascular events (MACE; cardiac death, target-vessel myocardial infarction (MI), or stent thrombosis); and 3) 2-year effectiveness, defined as target-vessel failure (TVF), a composite of cardiac death, target-vessel MI, or ischemia-driven target-vessel revascularization. RESULTS: The post-PCI MSA was larger in the OCT- (n=992) versus angiography-guided (n=981) group (5.56±1.95 versus 5.26±1.81mm2; difference, 0.30; 95% confidence interval [CI], 0.14-0.47; P<0.001). Compared with angiography-guided PCI, OCT-guided PCI resulted in a lower risk of serious MACE (3.1% versus 4.9%; hazard ratio [HR], 0.63; 95% CI, 0.40-0.99; P=0.04). TVF was not significantly different between groups (7.3% versus 8.8%; HR, 0.82; 95% CI, 0.59-1.12; P=0.20). CONCLUSIONS: In complex angiographic lesions, OCT-guided PCI led to a larger MSA and reduced the serious MACE composite of cardiac death, target-vessel MI, or stent thrombosis compared with angiography-guided PCI at 2 years, but did not significantly improve TVF.

2.
Circ Cardiovasc Interv ; 17(4): e013702, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38525609

ABSTRACT

BACKGROUND: Intravascular imaging and intracoronary physiology may both be used to guide and optimize percutaneous coronary intervention; however, they are rarely used together. The virtual flow reserve (VFR) is an optical coherence tomography (OCT)-based model of fractional flow reserve (FFR) facilitating the assessment of the physiological significance of coronary lesions. We aimed to validate the VFR assessment of intermediate coronary artery stenoses. METHODS: FUSION (Validation of OCT-Based Functional Diagnosis of Coronary Stenosis) was a multicenter, prospective, observational study comparing OCT-derived VFR to invasive FFR. VFR was mathematically derived from a lumped parameter flow model based on 3-dimensional lumen morphology. Patients undergoing coronary angiography with intermediate angiographic stenosis (40%-90%) requiring physiological assessment were enrolled. Investigational sites were blinded to the VFR analysis, and all OCT and FFR data were reviewed by an independent core laboratory. The coprimary end points were the sensitivity and specificity of VFR against FFR as the reference standard, each of which was tested against prespecified performance goals. RESULTS: After core laboratory review, 266 vessels in 224 patients from 25 US centers were included in the analysis. The mean angiographic diameter stenosis was 65.5%±14.9%, and the mean FFR was 0.83±0.11. Overall accuracy, sensitivity, and specificity of VFR versus FFR using a binary cutoff point of 0.80 were 82.0%, 80.4%, and 82.9%, respectively. The 97.5% lower confidence bound met the prespecified performance goal for sensitivity (71.6% versus 70%; P=0.01) and specificity (76.6% versus 75%; P=0.01). The area under the curve was 0.88 (95% CI, 0.84-0.92; P<0.0001). CONCLUSIONS: OCT-derived VFR demonstrates high sensitivity and specificity for predicting invasive FFR. Integrating high-resolution intravascular imaging with imaging-derived physiology may provide synergistic benefits as an adjunct to percutaneous coronary intervention. REGISTRATION: URL: https://clinicaltrials.gov; Unique identifier: NCT04356027.


Subject(s)
Coronary Stenosis , Fractional Flow Reserve, Myocardial , Humans , Constriction, Pathologic , Fractional Flow Reserve, Myocardial/physiology , Tomography, Optical Coherence/methods , Prospective Studies , Treatment Outcome , Coronary Stenosis/diagnostic imaging , Coronary Stenosis/therapy , Coronary Angiography/methods , Coronary Vessels , Predictive Value of Tests , Severity of Illness Index
3.
Sci Rep ; 14(1): 4393, 2024 02 22.
Article in English | MEDLINE | ID: mdl-38388637

ABSTRACT

Thin-cap fibroatheroma (TCFA) is a prominent risk factor for plaque rupture. Intravascular optical coherence tomography (IVOCT) enables identification of fibrous cap (FC), measurement of FC thicknesses, and assessment of plaque vulnerability. We developed a fully-automated deep learning method for FC segmentation. This study included 32,531 images across 227 pullbacks from two registries (TRANSFORM-OCT and UHCMC). Images were semi-automatically labeled using our OCTOPUS with expert editing using established guidelines. We employed preprocessing including guidewire shadow detection, lumen segmentation, pixel-shifting, and Gaussian filtering on raw IVOCT (r,θ) images. Data were augmented in a natural way by changing θ in spiral acquisitions and by changing intensity and noise values. We used a modified SegResNet and comparison networks to segment FCs. We employed transfer learning from our existing much larger, fully-labeled calcification IVOCT dataset to reduce deep-learning training. Postprocessing with a morphological operation enhanced segmentation performance. Overall, our method consistently delivered better FC segmentation results (Dice: 0.837 ± 0.012) than other deep-learning methods. Transfer learning reduced training time by 84% and reduced the need for more training samples. Our method showed a high level of generalizability, evidenced by highly-consistent segmentations across five-fold cross-validation (sensitivity: 85.0 ± 0.3%, Dice: 0.846 ± 0.011) and the held-out test (sensitivity: 84.9%, Dice: 0.816) sets. In addition, we found excellent agreement of FC thickness with ground truth (2.95 ± 20.73 µm), giving clinically insignificant bias. There was excellent reproducibility in pre- and post-stenting pullbacks (average FC angle: 200.9 ± 128.0°/202.0 ± 121.1°). Our fully automated, deep-learning FC segmentation method demonstrated excellent performance, generalizability, and reproducibility on multi-center datasets. It will be useful for multiple research purposes and potentially for planning stent deployments that avoid placing a stent edge over an FC.


Subject(s)
Deep Learning , Plaque, Atherosclerotic , Humans , Tomography, Optical Coherence/methods , Reproducibility of Results , Coronary Vessels/pathology , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/pathology , Fibrosis
4.
Eur Heart J Case Rep ; 8(2): ytae033, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38328601

ABSTRACT

Background: Prior exposure to cardiotoxic cancer therapies has been associated with an increased risk of peripartum cardiomyopathy (PPCM). The management of PPCM in this population remains a clinical challenge. Few studies have explored the use of mechanical circulatory support in PPCM. We present a case of early implementation of intra-aortic balloon pump (IABP) therapy for acute stabilization and intrapartum support of PPCM. Case summary: A 36-year-old G4P2103 (4th pregnancy, two full-term, one premature birth, 0 abortions, and three living children) woman at 26 weeks and 5 days gestation with history of combined peripartum and anthracycline-induced cardiomyopathy [previously left ventricular ejection fraction (LVEF) 10-15% and recently 40-45%] presented with acute decompensated heart failure. Her clinical status deteriorated with a drop in LVEF to 15-20% with a significant increase in pulmonary pressures and worsening mitral regurgitation. A multidisciplinary decision with the cardio-obstetrics team was made to place a pulmonary artery catheter for invasive haemodynamic monitoring and IABP insertion prior to delivery. Intra-aortic balloon pump support had a profound immediate decrease in her systemic and pulmonary vascular resistance allowing for a successful repeat caesarean delivery. Her haemodynamics remained stable after IABP removal and pulmonary pressures improved. She was discharged one week following her delivery on guideline-directed medical therapy. Discussion: Our case highlights the use of prophylactic intrapartum IABP in combined anthracycline-induced and PPCM and begins to explore its safety and efficacy in this high-risk patient population.

5.
Sci Rep ; 13(1): 16878, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37803070

ABSTRACT

In this work, stenting in non-calcified and heavily calcified coronary arteries was quantified in terms of diameter-pressure relationships and load transfer from the balloon to the artery. The efficacy of post-dilation in non-calcified and heavily calcified coronary arteries was also characterized in terms of load sharing and the changes in tissue mechanics. Our results have shown that stent expansion exhibits a cylindrical shape in non-calcified lesions, while it exhibits a dog bone shape in heavily calcified lesions. Load-sharing analysis has shown that only a small portion of the pressure load (1.4 N, 0.8% of total pressure load) was transferred to the non-calcified lesion, while a large amount of the pressure load (19 N, 12%) was transferred to the heavily calcified lesion. In addition, the increasing inflation pressure (from 10 to 20 atm) can effectively increase the minimal lumen diameter (from 1.48 to 2.82 mm) of the heavily calcified lesion, the stress (from 1.5 to 8.4 MPa) and the strain energy in the calcification (1.77 mJ to 26.5 mJ), which are associated with the potential of calcification fracture. Results indicated that increasing inflation pressure can be an effective way to improve the stent expansion if a dog bone shape of the stenting profile is observed. Considering the risk of a balloon burst, our results support the design and application of the high-pressure balloon for post-dilation. This work also sheds some light on the stent design and choice of stent materials for improving the stent expansion at the dog bone region and mitigating stresses on arterial tissues.


Subject(s)
Angioplasty, Balloon, Coronary , Coronary Artery Disease , Vascular Calcification , Animals , Dogs , Coronary Artery Disease/surgery , Coronary Angiography , Coronary Vessels/diagnostic imaging , Coronary Vessels/surgery , Dilatation , Stents , Treatment Outcome
6.
Sci Rep ; 13(1): 18110, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872298

ABSTRACT

It can be difficult/impossible to fully expand a coronary artery stent in a heavily calcified coronary artery lesion. Under-expanded stents are linked to later complications. Here we used machine/deep learning to analyze calcifications in pre-stent intravascular optical coherence tomography (IVOCT) images and predicted the success of vessel expansion. Pre- and post-stent IVOCT image data were obtained from 110 coronary lesions. Lumen and calcifications in pre-stent images were segmented using deep learning, and lesion features were extracted. We analyzed stent expansion along the lesion, enabling frame, segmental, and whole-lesion analyses. We trained regression models to predict the post-stent lumen area and then computed the stent expansion index (SEI). Best performance (root-mean-square-error = 0.04 ± 0.02 mm2, r = 0.94 ± 0.04, p < 0.0001) was achieved when we used features from both lumen and calcification to train a Gaussian regression model for segmental analysis of 31 frames in length. Stents with minimum SEI > 80% were classified as "well-expanded;" others were "under-expanded." Under-expansion classification results (e.g., AUC = 0.85 ± 0.02) were significantly improved over a previous, simple calculation, as well as other machine learning solutions. Promising results suggest that such methods can identify lesions at risk of under-expansion that would be candidates for intervention lesion preparation (e.g., atherectomy).


Subject(s)
Calcinosis , Coronary Artery Disease , Percutaneous Coronary Intervention , Vascular Calcification , Humans , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/surgery , Coronary Artery Disease/pathology , Coronary Vessels/diagnostic imaging , Coronary Vessels/surgery , Coronary Vessels/pathology , Tomography, Optical Coherence/methods , Treatment Outcome , Predictive Value of Tests , Stents , Calcinosis/pathology , Coronary Angiography , Vascular Calcification/diagnostic imaging , Vascular Calcification/pathology
7.
N Engl J Med ; 389(16): 1466-1476, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37634188

ABSTRACT

BACKGROUND: Data regarding clinical outcomes after optical coherence tomography (OCT)-guided percutaneous coronary intervention (PCI) as compared with angiography-guided PCI are limited. METHODS: In this prospective, randomized, single-blind trial, we randomly assigned patients with medication-treated diabetes or complex coronary-artery lesions to undergo OCT-guided PCI or angiography-guided PCI. A final blinded OCT procedure was performed in patients in the angiography group. The two primary efficacy end points were the minimum stent area after PCI as assessed with OCT and target-vessel failure at 2 years, defined as a composite of death from cardiac causes, target-vessel myocardial infarction, or ischemia-driven target-vessel revascularization. Safety was also assessed. RESULTS: The trial was conducted at 80 sites in 18 countries. A total of 2487 patients underwent randomization: 1233 patients were assigned to undergo OCT-guided PCI, and 1254 to undergo angiography-guided PCI. The minimum stent area after PCI was 5.72±2.04 mm2 in the OCT group and 5.36±1.87 mm2 in the angiography group (mean difference, 0.36 mm2; 95% confidence interval [CI], 0.21 to 0.51; P<0.001). Target-vessel failure within 2 years occurred in 88 patients in the OCT group and in 99 patients in the angiography group (Kaplan-Meier estimates, 7.4% and 8.2%, respectively; hazard ratio, 0.90; 95% CI, 0.67 to 1.19; P = 0.45). OCT-related adverse events occurred in 1 patient in the OCT group and in 2 patients in the angiography group. Stent thrombosis within 2 years occurred in 6 patients (0.5%) in the OCT group and in 17 patients (1.4%) in the angiography group. CONCLUSIONS: Among patients undergoing PCI, OCT guidance resulted in a larger minimum stent area than angiography guidance, but there was no apparent between-group difference in the percentage of patients with target-vessel failure at 2 years. (Funded by Abbott; ILUMIEN IV: OPTIMAL PCI ClinicalTrials.gov number, NCT03507777.).


Subject(s)
Coronary Angiography , Coronary Artery Disease , Percutaneous Coronary Intervention , Tomography, Optical Coherence , Humans , Coronary Angiography/adverse effects , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/therapy , Coronary Artery Disease/etiology , Percutaneous Coronary Intervention/adverse effects , Percutaneous Coronary Intervention/methods , Prospective Studies , Single-Blind Method , Tomography, Optical Coherence/methods , Treatment Outcome , Diabetes Mellitus , Blood Vessel Prosthesis Implantation/methods , Stents
8.
Res Sq ; 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37503304

ABSTRACT

In this work, stenting in non-calcified and heavily calcified coronary arteries was quantified in terms of diameter-pressure relationships and load transfer from the balloon to the artery. The efficacy of post-dilation in non-calcified and heavily calcified coronary arteries was also characterized in terms of load sharing and the changes in tissue mechanics. Our results have shown that stent expansion exhibits a cylindrical shape in non-calcified lesions, while it exhibits a dog bone shape in heavily calcified lesions. Load-sharing analysis has shown that only a small portion of the pressure load (1.4 N, 0.8% of total pressure load) was transferred to the non-calcified lesion, while a large amount of the pressure load (19 N, 12%) was transferred to the heavily calcified lesion. In addition, the increasing inflation pressure (from 10 to 20 atm) can effectively increase the minimal lumen diameter (from 1.48 mm to 2.82 mm) of the heavily calcified lesion, the stress (from 1.5 MPa to 8.4 MPa) the strain energy in the calcification (1.77 mJ to 26.5 mJ), which associated with the potential of calcification fracture. Results indicated that increasing inflation pressure can be an effective way to improve the stent expansion if a dog bone shape of the stenting profile is observed. Considering the risk of a balloon burst, our results support the design and application of the high-pressure balloon for post-dilation.

11.
Cardiol J ; 2023 03 10.
Article in English | MEDLINE | ID: mdl-36896638

ABSTRACT

BACKGROUND: The aim of the study was to compare healing (assessed by optical coherence tomography [OCT]) of biolimus A9 (BES) and everolimus drug-eluting stents (EES) at 9-month follow-up in patients with ST-segment elevation myocardial infarction (STEMI) treated by primary percutaneous coronary intervention (pPCI). Nine-month clinical and angiographic data were also compared in both groups as well as clinical data at 5 years of follow-up. METHODS: A total of 201 patients with STEMI were enrolled in the study and randomized either to pPCI with BES or EES implantation. All patients were scheduled for 9 months of angiographic and OCT follow-up. RESULTS: The rate of major adverse cardiovascular events (MACE) was comparable at 9 months in both groups (5% in BES vs. 6% in the EES group; p = 0.87). Angiographic data were also comparable between both groups. The main finding at 9-month OCT analysis was the greatly reduced extent of mean neointimal area at the cost of a higher proportion of uncovered struts in the BES group (1.3 mm² vs. 0.9 mm²; p = 0.0001 and 15.9% vs. 7.0%; p = 0.0001, respectively). At 5 years of clinical follow-up the rate of MACE was comparable between both groups (16.8% vs. 14.0%, p = 0.74). CONCLUSIONS: The study demonstrates a very low rate of MACE and good 9-month stent strut coverage of second-generation BES and EES in patients with STEMI. BES showed greatly reduced extent of mean neointimal hyperplasia area at the cost of a higher proportion of uncovered struts when compared to EES. The rate of MACE was low and comparable in both groups at 5 years.

12.
Heliyon ; 9(2): e13396, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36816277

ABSTRACT

Background and objective: Compared with other imaging modalities, intravascular optical coherence tomography (IVOCT) has significant advantages for guiding percutaneous coronary interventions, assessing their outcomes, and characterizing plaque components. To aid IVOCT research studies, we developed the Optical Coherence TOmography PlaqUe and Stent (OCTOPUS) analysis software, which provides highly automated, comprehensive analysis of coronary plaques and stents in IVOCT images. Methods: User specifications for OCTOPUS were obtained from detailed, iterative discussions with IVOCT analysts in the Cardiovascular Imaging Core Laboratory at University Hospitals Cleveland Medical Center, a leading laboratory for IVOCT image analysis. To automate image analysis results, the software includes several important algorithmic steps: pre-processing, deep learning plaque segmentation, machine learning identification of stent struts, and registration of pullbacks for sequential comparisons. Intuitive, interactive visualization and manual editing of segmentations were included in the software. Quantifications include stent deployment characteristics (e.g., stent area and stent strut malapposition), strut level analysis, calcium angle, and calcium thickness measurements. Interactive visualizations include (x,y) anatomical, en face, and longitudinal views with optional overlays (e.g., segmented calcifications). To compare images over time, linked visualizations were enabled to display up to four registered vessel segments at a time. Results: OCTOPUS has been deployed for nearly 1 year and is currently being used in multiple IVOCT studies. Underlying plaque segmentation algorithm yielded excellent pixel-wise results (86.2% sensitivity and 0.781 F1 score). Using OCTOPUS on 34 new pullbacks, we determined that following automated segmentation, only 13% and 23% of frames needed any manual touch up for detailed lumen and calcification labeling, respectively. Only up to 3.8% of plaque pixels were modified, leading to an average editing time of only 7.5 s/frame, an approximately 80% reduction compared to manual analysis. Regarding stent analysis, sensitivity and precision were both greater than 90%, and each strut was successfully classified as either covered or uncovered with high sensitivity (94%) and specificity (90%). We demonstrated use cases for sequential analysis. To analyze plaque progression, we loaded multiple pullbacks acquired at different points (e.g., pre-stent, 3-month follow-up, and 18-month follow-up) and evaluated frame-level development of in-stent neo-atherosclerosis. In ex vivo cadaver experiments, the OCTOPUS software enabled visualization and quantitative evaluation of irregular stent deployment in the presence of calcifications identified in pre-stent images. Conclusions: We introduced and evaluated the clinical application of a highly automated software package, OCTOPUS, for quantitative plaque and stent analysis in IVOCT images. The software is currently used as an offline tool for research purposes; however, the software's embedded algorithms may also be useful for real-time treatment planning.

13.
Cardiovasc Revasc Med ; 46: 98-105, 2023 01.
Article in English | MEDLINE | ID: mdl-35918253

ABSTRACT

BACKGROUND/PURPOSE: Matching phasic pressure tracings between a fluid-filled catheter and high-fidelity pressure wire has received limited attention, although each part contributes half of the information to clinical decisions. We aimed to study the impact of a novel and automated method for improving the phasic calibration of a fluid-filled catheter by accounting for its oscillatory behavior. METHODS/MATERIALS: Retrospective analysis of drift check tracings was performed using our algorithm that corrects for mean difference (offset), temporal delays (timing), differential sensitivity of the manifold transducer and pressure wire sensor (gain), and the oscillatory behavior of the fluid-filled catheter described by its resonant frequency and damping factor (how quickly oscillations disappear after a change in pressure). RESULTS: Among 2886 cases, correcting for oscillations showed a large improvement in 28 % and a medium improvement in 41 % (decrease in root mean square error >0.5 mmHg to <1 or 1-2 mmHg, respectively). 96 % of oscillators were underdamped with median damping factor 0.27 and frequency 10.6 Hz. Fractional flow reserve or baseline Pd/Pa demonstrated no clinically important bias when ignoring oscillations. However, uncorrected subcycle non-hyperemic pressure ratios (NHPR) displayed both bias and scatter. CONCLUSIONS: By automatically accounting for the oscillatory behavior of a fluid-filled catheter system, phasic matching against a high-fidelity pressure wire can be improved compared to standard equalization methods. The majority of tracings contain artifacts, mainly due to underdamped oscillations, and neglecting them leads to biased estimates of equalization parameters. No clinically important bias exists for whole-cycle metrics, in contrast to significant effects on subcycle NHPR.


Subject(s)
Fractional Flow Reserve, Myocardial , Humans , Artifacts , Retrospective Studies , Catheters
14.
Article in English | MEDLINE | ID: mdl-36465096

ABSTRACT

Microchannel formation is known to be a significant marker of plaque vulnerability, plaque rupture, and intraplaque hemorrhage, which are responsible for plaque progression. We developed a fully-automated method for detecting microchannels in intravascular optical coherence tomography (IVOCT) images using deep learning. A total of 3,075 IVOCT image frames across 41 patients having 62 microchannel segments were analyzed. Microchannel was manually annotated by expert cardiologists, according to previously established criteria. In order to improve segmentation performance, pre-processing including guidewire detection/removal, lumen segmentation, pixel-shifting, and noise filtering was applied to the raw (r,θ) IVOCT image. We used the DeepLab-v3 plus deep learning model with the Xception backbone network for identifying microchannel candidates. After microchannel candidate detection, each candidate was classified as either microchannel or no-microchannel using a convolutional neural network (CNN) classification model. Our method provided excellent segmentation of microchannel with a Dice coefficient of 0.811, sensitivity of 92.4%, and specificity of 99.9%. We found that pre-processing and data augmentation were very important to improve results. In addition, a CNN classification step was also helpful to rule out false positives. Furthermore, automated analysis missed only 3% of frames having microchannels and showed no false positives. Our method has great potential to enable highly automated, objective, repeatable, and comprehensive evaluations of vulnerable plaques and treatments. We believe that this method is promising for both research and clinical applications.

15.
Sci Rep ; 12(1): 21454, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36509806

ABSTRACT

Thin-cap fibroatheroma (TCFA) and plaque rupture have been recognized as the most frequent risk factor for thrombosis and acute coronary syndrome. Intravascular optical coherence tomography (IVOCT) can identify TCFA and assess cap thickness, which provides an opportunity to assess plaque vulnerability. We developed an automated method that can detect lipidous plaque and assess fibrous cap thickness in IVOCT images. This study analyzed a total of 4360 IVOCT image frames of 77 lesions among 41 patients. Expert cardiologists manually labeled lipidous plaque based on established criteria. To improve segmentation performance, preprocessing included lumen segmentation, pixel-shifting, and noise filtering on the raw polar (r, θ) IVOCT images. We used the DeepLab-v3 plus deep learning model to classify lipidous plaque pixels. After lipid detection, we automatically detected the outer border of the fibrous cap using a special dynamic programming algorithm and assessed the cap thickness. Our method provided excellent discriminability of lipid plaque with a sensitivity of 85.8% and A-line Dice coefficient of 0.837. By comparing lipid angle measurements between two analysts following editing of our automated software, we found good agreement by Bland-Altman analysis (difference 6.7° ± 17°; mean ~ 196°). Our method accurately detected the fibrous cap from the detected lipid plaque. Automated analysis required a significant modification for only 5.5% frames. Furthermore, our method showed a good agreement of fibrous cap thickness between two analysts with Bland-Altman analysis (4.2 ± 14.6 µm; mean ~ 175 µm), indicating little bias between users and good reproducibility of the measurement. We developed a fully automated method for fibrous cap quantification in IVOCT images, resulting in good agreement with determinations by analysts. The method has great potential to enable highly automated, repeatable, and comprehensive evaluations of TCFAs.


Subject(s)
Coronary Artery Disease , Plaque, Atherosclerotic , Humans , Coronary Vessels/diagnostic imaging , Coronary Vessels/pathology , Tomography, Optical Coherence/methods , Coronary Artery Disease/pathology , Reproducibility of Results , Plaque, Atherosclerotic/pathology , Fibrosis , Lipids
16.
Bioengineering (Basel) ; 9(11)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36354559

ABSTRACT

Microvessels in vascular plaque are associated with plaque progression and are found in plaque rupture and intra-plaque hemorrhage. To analyze this characteristic of vulnerability, we developed an automated deep learning method for detecting microvessels in intravascular optical coherence tomography (IVOCT) images. A total of 8403 IVOCT image frames from 85 lesions and 37 normal segments were analyzed. Manual annotation was performed using a dedicated software (OCTOPUS) previously developed by our group. Data augmentation in the polar (r,θ) domain was applied to raw IVOCT images to ensure that microvessels appear at all possible angles. Pre-processing methods included guidewire/shadow detection, lumen segmentation, pixel shifting, and noise reduction. DeepLab v3+ was used to segment microvessel candidates. A bounding box on each candidate was classified as either microvessel or non-microvessel using a shallow convolutional neural network. For better classification, we used data augmentation (i.e., angle rotation) on bounding boxes with a microvessel during network training. Data augmentation and pre-processing steps improved microvessel segmentation performance significantly, yielding a method with Dice of 0.71 ± 0.10 and pixel-wise sensitivity/specificity of 87.7 ± 6.6%/99.8 ± 0.1%. The network for classifying microvessels from candidates performed exceptionally well, with sensitivity of 99.5 ± 0.3%, specificity of 98.8 ± 1.0%, and accuracy of 99.1 ± 0.5%. The classification step eliminated the majority of residual false positives and the Dice coefficient increased from 0.71 to 0.73. In addition, our method produced 698 image frames with microvessels present, compared with 730 from manual analysis, representing a 4.4% difference. When compared with the manual method, the automated method improved microvessel continuity, implying improved segmentation performance. The method will be useful for research purposes as well as potential future treatment planning.

17.
Appl Sci (Basel) ; 12(11)2022 Jun.
Article in English | MEDLINE | ID: mdl-36313242

ABSTRACT

The computational fluid dynamic method has been widely used to quantify the hemodynamic alterations in a diseased artery and investigate surgery outcomes. The artery model reconstructed based on optical coherence tomography (OCT) images generally does not include the side branches. However, the side branches may significantly affect the hemodynamic assessment in a clinical setting, i.e., the fractional flow reserve (FFR), defined as the ratio of mean distal coronary pressure to mean aortic pressure. In this work, the effect of the side branches on FFR estimation was inspected with both idealized and optical coherence tomography (OCT)-reconstructed coronary artery models. The electrical analogy of blood flow was further used to understand the impact of the side branches (diameter and location) on FFR estimation. Results have shown that the side branches decrease the total resistance of the vessel tree, resulting in a higher inlet flowrate. The side branches located at the downstream of the stenosis led to a lower FFR value, while the ones at the upstream had a minimal impact on the FFR estimation. Side branches with a diameter larger than one third of the main vessel diameter are suggested to be considered for a proper FFR estimation. The findings in this study could be extended to other coronary artery imaging modalities and facilitate treatment planning.

18.
Cardiovasc Revasc Med ; 43: 62-70, 2022 10.
Article in English | MEDLINE | ID: mdl-35597721

ABSTRACT

INTRODUCTION: Interventional cardiologists make adjustments in the presence of coronary calcifications known to limit stent expansion, but proper balloon sizing, plaque-modification approaches, and high-pressure regimens are not well established. Intravascular optical coherence tomography (IVOCT) provides high-resolution images of coronary tissues, including detailed imaging of calcifications, and accurate measurements of stent deployment, providing a means for detailed study of stent deployment. OBJECTIVE: Evaluate stent expansion in an ex vivo model of calcified coronary arteries as a function of balloon size and high-pressure, post-dilatation strategies. METHODS: We conducted experiments on cadaver hearts with calcified coronary lesions. We assessed stent expansion as a function of size and pressure of non-compliant (NC) balloons (i.e., nominal, 0.5, 1.0, and 1.5 mm balloons at 10, 20 and 30 atm). IVOCT images were acquired pre-stent, post-stent, and at all post-dilatations. Stent expansion was calculated using minimum expansion index (MEI). RESULTS: We analyzed 134 IVOCT pullbacks from ten ex-vivo experiments. The mean distal and proximal reference lumen diameters were 2.2 ± 0.5 mm and 2.5 ± 0.7 mm, respectively, 80% of times using a 3.0 mm diameter stent. Overall, based on stent sizing, a good expansion (MEI ≥ 80%) was reached using the 1:1 NC balloon at 20 atm, and expansion > 100% was reached using the 1:1 NC balloon at 30 atm. In the subgroup analysis, comparing low-calcified and high-calcified lesions, good expansion (MEI ≥ 80%) was reached using the 1:1 NC balloon at nominal pressure (10 atm) versus using 1:1 NC balloon at 30 atm, respectively. Significant vessel rupture was identified in all the vessels mainly upon post-dilatation with larger balloons, and 60% of the experiments (6 vessels, 3 in each calcium subgroup) presented rupture with the +1.0 mm NC balloon at 20 atm. CONCLUSION: When treating calcified lesions, good stent expansion was reached using smaller balloons at higher pressures without coronary injuries, whereas bigger balloons yielded unpredictable expansion even at lower pressures and demonstrated potential harmful damages to the vessels. As these findings could help physicians with appropriate planning of stent post-dilatation for calcified lesions, it will be important to clinically evaluate the recommended protocol.


Subject(s)
Angioplasty, Balloon, Coronary , Coronary Artery Disease , Angioplasty, Balloon, Coronary/adverse effects , Angioplasty, Balloon, Coronary/methods , Calcium , Coronary Angiography/methods , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/therapy , Coronary Vessels/diagnostic imaging , Dilatation , Humans , Stents , Tomography, Optical Coherence , Treatment Outcome
19.
J Invasive Cardiol ; 34(2): E124-E131, 2022 02.
Article in English | MEDLINE | ID: mdl-35100555

ABSTRACT

BACKGROUND: Percutaneous left atrial appendage occlusion (LAAO) with the Watchman device is FDA approved for stroke prevention in patients with nonvalvular atrial fibrillation who have an appropriate indication. During the COVID-19 pandemic, a same-day discharge protocol (SDDP) was employed to improve resource utilization, relieve hospital occupation, and reduce the possible risk of in-hospital virus transmission. OBJECTIVES: We sought to analyze the safety, feasibility, and cost effectiveness for SDDP in patients receiving LAAO. METHODS: A prospective analysis of 142 consecutive patients, 119 treated prior to SDDP and 23 who underwent SDDP following LAAO with cardiac computed tomography angiography (CTA)-guided pre-procedural planning and intracardiac echocardiogram (ICE). Procedures were performed in a single, large academic hospital in the United States. In-hospital and 45-day procedural success, adverse events, length of procedure, and length-of-stay were evaluated. RESULTS: Baseline patient characteristics including mean CHA2DS2VASc scores and mean HAS-BLED scores were similar in both groups. All procedures were successful. There was no significant difference in rates of procedural complications or in-hospital adverse events. The mean procedure time in the SDDP group was 11 minutes longer than in the conventional group (62.1 ± 5.9 vs 51.1 ± 21; P=.01). Outcomes at 45-day follow-up were similar. SDDP was associated with a reduced length of stay compared with conventional strategy and a 15% reduction in total costs. CONCLUSIONS: Same-day discharge strategy for LAAO appears safe, feasible and could become the new standard approach for LAAO. A protocol including CTA pre-procedural planning, ICE-guided deployment and conscious sedation reduces hospital occupation and lowers costs.


Subject(s)
Atrial Appendage , COVID-19 , Atrial Appendage/diagnostic imaging , Atrial Appendage/surgery , Cardiac Catheterization , Cost-Benefit Analysis , Humans , Pandemics , Patient Discharge , SARS-CoV-2 , Treatment Outcome
20.
J Invasive Cardiol ; 33(11): E851-E856, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34619655

ABSTRACT

OBJECTIVES: We reviewed the periprocedural events, accuracy of device selection, and outcomes of a series of patients receiving percutaneous left atrial appendage occlusion (LAAO) with cardiac computed tomography angiography (CTA)-guided preprocedural planning and intracardiac echocardiography (ICE)-guided device deployment. BACKGROUND: Percutaneous LAAO with the Watchman device (Boston Scientific) is approved by the United States Food and Drug Administration for stroke prevention in patients with non-valvular atrial fibrillation with a demonstrated contraindication to oral anticoagulation. Cardiac CTA preprocedural planning with utilization of an ICE-guided deployment may be associated with favorable outcomes. METHODS: A prospective analysis of 71 non-consecutive patients who underwent LAAO over an 18-month period with cardiac CTA-guided preprocedural planning and ICE was conducted. Procedures were performed in a single large, academic hospital in the United States. Procedural success, correlation of CTA preprocedural device sizing with final device size utilization, adverse events, length of procedure, and length of stay were evaluated. RESULTS: Preprocedural cardiac CTA-guided device sizing was consistent with the final deployed device in 69 patients (97.2%) evaluated in this case series. Procedure success rate was 100%. All implants were performed using Watchman devices, 45 (63.4%) with the original 2.5 platform and 26 (36.6%) with the Watchman FLX platform. All patients were treated with conscious sedation and the mean length of stay was 1.45 ± 0.72 days. Only 2 adverse events occurred and both resolved. CONCLUSIONS: Cardiac CTA-guided preprocedural planning resulted in accurate device sizing in this patient sample and may be used in conjunction with ICE and conscious sedation for a same-day discharge strategy in select patients.


Subject(s)
Atrial Appendage , Atrial Fibrillation , Atrial Appendage/diagnostic imaging , Atrial Appendage/surgery , Atrial Fibrillation/complications , Atrial Fibrillation/diagnosis , Atrial Fibrillation/surgery , Cardiac Catheterization , Computed Tomography Angiography , Echocardiography, Transesophageal , Humans , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...