Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Cell Rep ; 43(4): 113976, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38507410

ABSTRACT

Activating transcription factor 4 (ATF4) is a master transcriptional regulator of the integrated stress response, leading cells toward adaptation or death. ATF4's induction under stress was thought to be due to delayed translation reinitiation, where the reinitiation-permissive upstream open reading frame 1 (uORF1) plays a key role. Accumulating evidence challenging this mechanism as the sole source of ATF4 translation control prompted us to investigate additional regulatory routes. We identified a highly conserved stem-loop in the uORF2/ATF4 overlap, immediately preceded by a near-cognate CUG, which introduces another layer of regulation in the form of ribosome queuing. These elements explain how the inhibitory uORF2 can be translated under stress, confirming prior observations but contradicting the original regulatory model. We also identified two highly conserved, potentially modified adenines performing antagonistic roles. Finally, we demonstrated that the canonical ATF4 translation start site is substantially leaky scanned. Thus, ATF4's translational control is more complex than originally described, underpinning its key role in diverse biological processes.


Subject(s)
Activating Transcription Factor 4 , Open Reading Frames , Protein Biosynthesis , Ribosomes , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Humans , Ribosomes/metabolism , Open Reading Frames/genetics , Stress, Physiological , HEK293 Cells , Base Sequence
3.
bioRxiv ; 2024 Feb 18.
Article in English | MEDLINE | ID: mdl-37502919

ABSTRACT

ATF4 is a master transcriptional regulator of the integrated stress response leading cells towards adaptation or death. ATF4's induction under stress was thought to be mostly due to delayed translation reinitiation, where the reinitiation-permissive uORF1 plays a key role. Accumulating evidence challenging this mechanism as the sole source of ATF4 translation control prompted us to investigate additional regulatory routes. We identified a highly conserved stem-loop in the uORF2/ATF4 overlap, immediately preceded by a near-cognate CUG, which introduces another layer of regulation in the form of ribosome queuing. These elements explain how the inhibitory uORF2 can be translated under stress, confirming prior observations, but contradicting the original regulatory model. We also identified two highly conserved, potentially modified adenines performing antagonistic roles. Finally, we demonstrate that the canonical ATF4 translation start site is substantially leaky-scanned. Thus, ATF4's translational control is more complex than originally described underpinning its key role in diverse biological processes.

5.
RNA ; 29(9): 1379-1387, 2023 09.
Article in English | MEDLINE | ID: mdl-37221013

ABSTRACT

Under certain circumstances, any of the three termination codons can be read through by a near-cognate tRNA; i.e., a tRNA whose two out of three anticodon nucleotides base pair with those of the stop codon. Unless programed to synthetize C-terminally extended protein variants with expanded physiological roles, readthrough represents an undesirable translational error. On the other side of a coin, a significant number of human genetic diseases is associated with the introduction of nonsense mutations (premature termination codons [PTCs]) into coding sequences, where stopping is not desirable. Here, the tRNA's ability to induce readthrough opens up the intriguing possibility of mitigating the deleterious effects of PTCs on human health. In yeast, the UGA and UAR stop codons were described to be read through by four readthrough-inducing rti-tRNAs-tRNATrp and tRNACys, and tRNATyr and tRNAGln, respectively. The readthrough-inducing potential of tRNATrp and tRNATyr was also observed in human cell lines. Here, we investigated the readthrough-inducing potential of human tRNACys in the HEK293T cell line. The tRNACys family consists of two isoacceptors, one with ACA and the other with GCA anticodons. We selected nine representative tRNACys isodecoders (differing in primary sequence and expression level) and tested them using dual luciferase reporter assays. We found that at least two tRNACys can significantly elevate UGA readthrough when overexpressed. This indicates a mechanistically conserved nature of rti-tRNAs between yeast and human, supporting the idea that they could be used in the PTC-associated RNA therapies.


Subject(s)
Cysteine , Saccharomyces cerevisiae , Humans , Codon, Terminator/genetics , Cysteine/genetics , Cysteine/metabolism , HEK293 Cells , Saccharomyces cerevisiae/genetics , RNA, Transfer, Cys/metabolism , RNA, Transfer, Trp/metabolism , RNA, Transfer, Tyr , RNA, Transfer/genetics , RNA, Transfer/metabolism , Anticodon , Codon, Nonsense/genetics , Protein Biosynthesis
6.
Nature ; 613(7945): 751-758, 2023 01.
Article in English | MEDLINE | ID: mdl-36631608

ABSTRACT

Cognate tRNAs deliver specific amino acids to translating ribosomes according to the standard genetic code, and three codons with no cognate tRNAs serve as stop codons. Some protists have reassigned all stop codons as sense codons, neglecting this fundamental principle1-4. Here we analyse the in-frame stop codons in 7,259 predicted protein-coding genes of a previously undescribed trypanosomatid, Blastocrithidia nonstop. We reveal that in this species in-frame stop codons are underrepresented in genes expressed at high levels and that UAA serves as the only termination codon. Whereas new tRNAsGlu fully cognate to UAG and UAA evolved to reassign these stop codons, the UGA reassignment followed a different path through shortening the anticodon stem of tRNATrpCCA from five to four base pairs (bp). The canonical 5-bp tRNATrp recognizes UGG as dictated by the genetic code, whereas its shortened 4-bp variant incorporates tryptophan also into in-frame UGA. Mimicking this evolutionary twist by engineering both variants from B. nonstop, Trypanosoma brucei and Saccharomyces cerevisiae and expressing them in the last two species, we recorded a significantly higher readthrough for all 4-bp variants. Furthermore, a gene encoding B. nonstop release factor 1 acquired a mutation that specifically restricts UGA recognition, robustly potentiating the UGA reassignment. Virtually the same strategy has been adopted by the ciliate Condylostoma magnum. Hence, we describe a previously unknown, universal mechanism that has been exploited in unrelated eukaryotes with reassigned stop codons.


Subject(s)
Anticodon , Codon, Terminator , Eukaryotic Cells , Genetic Code , Mutation , Peptide Termination Factors , RNA, Transfer , Anticodon/chemistry , Anticodon/genetics , Anticodon/metabolism , Ciliophora/genetics , Codon, Terminator/genetics , Genetic Code/genetics , Peptide Termination Factors/genetics , Peptide Termination Factors/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA, Transfer, Trp/genetics , Saccharomyces cerevisiae/genetics , RNA, Transfer, Glu/genetics , Trypanosoma brucei brucei/genetics
7.
Nucleic Acids Res ; 49(9): 5202-5215, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34009360

ABSTRACT

Regulation of translation via stop codon readthrough (SC-RT) expands not only tissue-specific but also viral proteomes in humans and, therefore, represents an important subject of study. Understanding this mechanism and all involved players is critical also from a point of view of prospective medical therapies of hereditary diseases caused by a premature termination codon. tRNAs were considered for a long time to be just passive players delivering amino acid residues according to the genetic code to ribosomes without any active regulatory roles. In contrast, our recent yeast work identified several endogenous tRNAs implicated in the regulation of SC-RT. Swiftly emerging studies of human tRNA-ome also advocate that tRNAs have unprecedented regulatory potential. Here, we developed a universal U6 promotor-based system expressing various human endogenous tRNA iso-decoders to study consequences of their increased dosage on SC-RT employing various reporter systems in vivo. This system combined with siRNA-mediated downregulations of selected aminoacyl-tRNA synthetases demonstrated that changing levels of human tryptophan and tyrosine tRNAs do modulate efficiency of SC-RT. Overall, our results suggest that tissue-to-tissue specific levels of selected near-cognate tRNAs may have a vital potential to fine-tune the final landscape of the human proteome, as well as that of its viral pathogens.


Subject(s)
Codon, Terminator , Protein Biosynthesis , RNA, Transfer, Trp/metabolism , RNA, Transfer, Tyr/metabolism , Cell Line , Genes, Reporter , Humans , Mutation , Plasmids/genetics , Promoter Regions, Genetic , Proteins/genetics , RNA, Small Nuclear/genetics , RNA, Transfer, Trp/genetics , RNA, Transfer, Tyr/genetics , Tryptophan-tRNA Ligase/genetics , Tumor Suppressor Protein p53/biosynthesis , Tumor Suppressor Protein p53/genetics , Tyrosine-tRNA Ligase/genetics , Viral Proteins/genetics
8.
Nucleic Acids Res ; 47(21): 11326-11343, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31642471

ABSTRACT

Ribosome was long considered as a critical yet passive player in protein synthesis. Only recently the role of its basic components, ribosomal RNAs and proteins, in translational control has begun to emerge. Here we examined function of the small ribosomal protein uS3/Rps3, earlier shown to interact with eukaryotic translation initiation factor eIF3, in termination. We identified two residues in consecutive helices occurring in the mRNA entry pore, whose mutations to the opposite charge either reduced (K108E) or increased (R116D) stop codon readthrough. Whereas the latter increased overall levels of eIF3-containing terminating ribosomes in heavy polysomes in vivo indicating slower termination rates, the former specifically reduced eIF3 amounts in termination complexes. Combining these two mutations with the readthrough-reducing mutations at the extreme C-terminus of the a/Tif32 subunit of eIF3 either suppressed (R116D) or exacerbated (K108E) the readthrough phenotypes, and partially corrected or exacerbated the defects in the composition of termination complexes. In addition, we found that K108 affects efficiency of termination in the termination context-specific manner by promoting incorporation of readthrough-inducing tRNAs. Together with the multiple binding sites that we identified between these two proteins, we suggest that Rps3 and eIF3 closely co-operate to control translation termination and stop codon readthrough.


Subject(s)
Codon, Terminator/metabolism , Eukaryotic Initiation Factor-3/metabolism , Peptide Chain Termination, Translational , Ribosomal Proteins/physiology , Saccharomyces cerevisiae Proteins/physiology , Binding Sites/genetics , Eukaryotic Initiation Factor-3/genetics , Organisms, Genetically Modified , Peptide Chain Termination, Translational/genetics , Protein Binding , Protein Biosynthesis/genetics , RNA, Transfer/metabolism , Ribosomal Proteins/genetics , Ribosomes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics
9.
Nucleic Acids Res ; 47(12): 6339-6350, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31069379

ABSTRACT

Stop codon readthrough-the decoding of a stop codon by a near-cognate tRNA-is employed by viruses to balance levels of enzymatic and structural proteins and by eukaryotic cells to enable isoform-specific protein synthesis in response to external stimuli. Owing to the prevalence of premature termination codons in human disease, readthrough has emerged as an attractive therapeutic target. A growing list of various features, for example the +4 nucleotide immediately following the stop codon, modulate readthrough levels, underscoring the need for systematic investigation of readthrough. Here, we identified and described a complete group of yeast tRNAs that induce readthrough in the stop-codon tetranucleotide manner when overexpressed, designated readthrough-inducing tRNAs (rti-tRNAs). These rti-tRNAs are the keystones of YARIS (yeast applied readthrough inducing system), a reporter-based assay enabling simultaneous detection of readthrough levels at all twelve stop-codon tetranucleotides and as a function of the complete set of rti-tRNAs. We demonstrate the utility of YARIS for systematic study of translation readthrough by employing it to interrogate the effects of natural rti-tRNA modifications, as well as various readthrough-inducing drugs (RTIDs). This analysis identified a variety of genetic interactions demonstrating the power of YARIS to characterize existing and identify novel RTIDs.


Subject(s)
Codon, Terminator , Protein Biosynthesis , RNA, Transfer/metabolism , Aminoglycosides/pharmacology , Nucleotides/chemistry , Protein Biosynthesis/drug effects , RNA, Transfer, Gln , RNA, Transfer, Tyr , Saccharomyces cerevisiae/genetics
10.
Nucleic Acids Res ; 45(19): 10948-10968, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-28981723

ABSTRACT

Protein synthesis is mediated via numerous molecules including the ribosome, mRNA, tRNAs, as well as translation initiation, elongation and release factors. Some of these factors play several roles throughout the entire process to ensure proper assembly of the preinitiation complex on the right mRNA, accurate selection of the initiation codon, errorless production of the encoded polypeptide and its proper termination. Perhaps, the most intriguing of these multitasking factors is the eukaryotic initiation factor eIF3. Recent evidence strongly suggests that this factor, which coordinates the progress of most of the initiation steps, does not come off the initiation complex upon subunit joining, but instead it remains bound to 80S ribosomes and gradually falls off during the first few elongation cycles to: (1) promote resumption of scanning on the same mRNA molecule for reinitiation downstream-in case of translation of upstream ORFs short enough to preserve eIF3 bound; or (2) come back during termination on long ORFs to fine tune its fidelity or, if signaled, promote programmed stop codon readthrough. Here, we unite recent structural views of the eIF3-40S complex and discus all known eIF3 roles to provide a broad picture of the eIF3's impact on translational control in eukaryotic cells.


Subject(s)
Eukaryotic Initiation Factor-3/chemistry , Eukaryotic Initiation Factor-3/metabolism , Protein Biosynthesis , Protein Conformation , Animals , Eukaryotic Initiation Factor-3/genetics , Humans , Models, Molecular , Protein Binding , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
11.
Elife ; 52016 10 26.
Article in English | MEDLINE | ID: mdl-27782884

ABSTRACT

Eukaryotic translation initiation factor 3 (eIF3) is a central player in recruitment of the pre-initiation complex (PIC) to mRNA. We probed the effects on mRNA recruitment of a library of S. cerevisiae eIF3 functional variants spanning its 5 essential subunits using an in vitro-reconstituted system. Mutations throughout eIF3 disrupt its interaction with the PIC and diminish its ability to accelerate recruitment to a native yeast mRNA. Alterations to the eIF3a CTD and eIF3b/i/g significantly slow mRNA recruitment, and mutations within eIF3b/i/g destabilize eIF2•GTP•Met-tRNAi binding to the PIC. Using model mRNAs lacking contacts with the 40S entry or exit channels, we uncovered a critical role for eIF3 requiring the eIF3a NTD, in stabilizing mRNA interactions at the exit channel, and an ancillary role at the entry channel requiring residues of the eIF3a CTD. These functions are redundant: defects at each channel can be rescued by filling the other channel with mRNA.


Subject(s)
Eukaryotic Initiation Factor-3/metabolism , Protein Subunits/metabolism , RNA, Messenger/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae/metabolism , DNA Mutational Analysis , Eukaryotic Initiation Factor-3/genetics , Guanosine Triphosphate/metabolism , Mutant Proteins/genetics , Mutant Proteins/metabolism , Protein Biosynthesis , Protein Subunits/genetics , RNA, Transfer, Met/metabolism , Saccharomyces cerevisiae/genetics
12.
RNA ; 22(4): 542-58, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26822200

ABSTRACT

Translational control in eukaryotes is exerted by many means, one of which involves a ribosome translating multiple cistrons per mRNA as in bacteria. It is called reinitiation (REI) and occurs on mRNAs where the main ORF is preceded by a short upstream uORF(s). Some uORFs support efficient REI on downstream cistrons, whereas some others do not. The mRNA of yeast transcriptional activator GCN4 contains four uORFs of both types that together compose an intriguing regulatory mechanism of its expression responding to nutrients' availability and various stresses. Here we subjected all GCN4 uORFs to a comprehensive analysis to identify all REI-promoting and inhibiting cis-determinants that contribute either autonomously or in synergy to the overall efficiency of REI on GCN4. We found that the 3' sequences of uORFs 1-3 contain a conserved AU1-2A/UUAU2 motif that promotes REI in position-specific, autonomous fashion such as the REI-promoting elements occurring in 5' sequences of uORF1 and uORF2. We also identified autonomous and transferable REI-inhibiting elements in the 3' sequences of uORF2 and uORF3, immediately following their AU-rich motif. Furthermore, we analyzed contributions of coding triplets and terminating stop codon tetranucleotides of GCN4 uORFs showing a negative correlation between the efficiency of reinitiation and efficiency of translation termination. Together we provide a complex overview of all cis-determinants of REI with their effects set in the context of the overall GCN4 translational control.


Subject(s)
Basic-Leucine Zipper Transcription Factors/genetics , RNA, Messenger/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Base Sequence , Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation, Fungal , Open Reading Frames , Peptide Chain Initiation, Translational , RNA, Messenger/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Sequence Analysis, RNA
13.
RNA ; 22(3): 456-66, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26759455

ABSTRACT

The molecular mechanism of stop codon recognition by the release factor eRF1 in complex with eRF3 has been described in great detail; however, our understanding of what determines the difference in termination efficiencies among various stop codon tetranucleotides and how near-cognate (nc) tRNAs recode stop codons during programmed readthrough in Saccharomyces cerevisiae is still poor. Here, we show that UGA-C as the only tetranucleotide of all four possible combinations dramatically exacerbated the readthrough phenotype of the stop codon recognition-deficient mutants in eRF1. Since the same is true also for UAA-C and UAG-C, we propose that the exceptionally high readthrough levels that all three stop codons display when followed by cytosine are partially caused by the compromised sampling ability of eRF1, which specifically senses cytosine at the +4 position. The difference in termination efficiencies among the remaining three UGA-N tetranucleotides is then given by their varying preferences for nc-tRNAs. In particular, UGA-A allows increased incorporation of Trp-tRNA whereas UGA-G and UGA-C favor Cys-tRNA. Our findings thus expand the repertoire of general decoding rules by showing that the +4 base determines the preferred selection of nc-tRNAs and, in the case of cytosine, it also genetically interacts with eRF1. Finally, using an example of the GCN4 translational control governed by four short uORFs, we also show how the evolution of this mechanism dealt with undesirable readthrough on those uORFs that serve as the key translation reinitiation promoting features of the GCN4 regulation, as both of these otherwise counteracting activities, readthrough versus reinitiation, are mediated by eIF3.


Subject(s)
Oligonucleotides/genetics , Open Reading Frames , RNA, Transfer/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Codon, Terminator , Cytosine/metabolism , Eukaryotic Initiation Factor-3/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
14.
Nucleic Acids Res ; 43(10): 5099-111, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25925566

ABSTRACT

Programmed stop codon readthrough is a post-transcription regulatory mechanism specifically increasing proteome diversity by creating a pool of C-terminally extended proteins. During this process, the stop codon is decoded as a sense codon by a near-cognate tRNA, which programs the ribosome to continue elongation. The efficiency of competition for the stop codon between release factors (eRFs) and near-cognate tRNAs is largely dependent on its nucleotide context; however, the molecular mechanism underlying this process is unknown. Here, we show that it is the translation initiation (not termination) factor, namely eIF3, which critically promotes programmed readthrough on all three stop codons. In order to do so, eIF3 must associate with pre-termination complexes where it interferes with the eRF1 decoding of the third/wobble position of the stop codon set in the unfavorable termination context, thus allowing incorporation of near-cognate tRNAs with a mismatch at the same position. We clearly demonstrate that efficient readthrough is enabled by near-cognate tRNAs with a mismatch only at the third/wobble position. Importantly, the eIF3 role in programmed readthrough is conserved between yeast and humans.


Subject(s)
Codon, Terminator , Eukaryotic Initiation Factor-3/metabolism , Peptide Chain Elongation, Translational , Gene Expression Regulation , HeLa Cells , Humans , Paromomycin/pharmacology , Peptide Chain Initiation, Translational , RNA, Transfer, Amino Acyl/metabolism , Ribosomes/drug effects , Ribosomes/metabolism , Yeasts/genetics
15.
Nucleic Acids Res ; 42(6): 4123-39, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24423867

ABSTRACT

Transfer of genetic information from genes into proteins is mediated by messenger RNA (mRNA) that must be first recruited to ribosomal pre-initiation complexes (PICs) by a mechanism that is still poorly understood. Recent studies showed that besides eIF4F and poly(A)-binding protein, eIF3 also plays a critical role in this process, yet the molecular mechanism of its action is unknown. We showed previously that the PCI domain of the eIF3c/NIP1 subunit of yeast eIF3 is involved in RNA binding. To assess the role of the second PCI domain of eIF3 present in eIF3a/TIF32, we performed its mutational analysis and identified a 10-Ala-substitution (Box37) that severely reduces amounts of model mRNA in the 43-48S PICs in vivo as the major, if not the only, detectable defect. Crystal structure analysis of the a/TIF32-PCI domain at 2.65-Å resolution showed that it is required for integrity of the eIF3 core and, similarly to the c/NIP1-PCI, is capable of RNA binding. The putative RNA-binding surface defined by positively charged areas contains two Box37 residues, R363 and K364. Their substitutions with alanines severely impair the mRNA recruitment step in vivo suggesting that a/TIF32-PCI represents one of the key domains ensuring stable and efficient mRNA delivery to the PICs.


Subject(s)
Eukaryotic Initiation Factor-3/chemistry , Peptide Chain Initiation, Translational , RNA, Messenger/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Alanine/genetics , Amino Acid Substitution , Basic-Leucine Zipper Transcription Factors/genetics , Eukaryotic Initiation Factor-3/genetics , Eukaryotic Initiation Factor-3/metabolism , Models, Molecular , Mutation , Phenotype , Protein Structure, Tertiary , Ribosome Subunits, Small, Eukaryotic/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
16.
PLoS Genet ; 9(11): e1003962, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24278036

ABSTRACT

Translation is divided into initiation, elongation, termination and ribosome recycling. Earlier work implicated several eukaryotic initiation factors (eIFs) in ribosomal recycling in vitro. Here, we uncover roles for HCR1 and eIF3 in translation termination in vivo. A substantial proportion of eIF3, HCR1 and eukaryotic release factor 3 (eRF3) but not eIF5 (a well-defined "initiation-specific" binding partner of eIF3) specifically co-sediments with 80S couples isolated from RNase-treated heavy polysomes in an eRF1-dependent manner, indicating the presence of eIF3 and HCR1 on terminating ribosomes. eIF3 and HCR1 also occur in ribosome- and RNA-free complexes with both eRFs and the recycling factor ABCE1/RLI1. Several eIF3 mutations reduce rates of stop codon read-through and genetically interact with mutant eRFs. In contrast, a slow growing deletion of hcr1 increases read-through and accumulates eRF3 in heavy polysomes in a manner suppressible by overexpressed ABCE1/RLI1. Based on these and other findings we propose that upon stop codon recognition, HCR1 promotes eRF3·GDP ejection from the post-termination complexes to allow binding of its interacting partner ABCE1/RLI1. Furthermore, the fact that high dosage of ABCE1/RLI1 fully suppresses the slow growth phenotype of hcr1Δ as well as its termination but not initiation defects implies that the termination function of HCR1 is more critical for optimal proliferation than its function in translation initiation. Based on these and other observations we suggest that the assignment of HCR1 as a bona fide eIF3 subunit should be reconsidered. Together our work characterizes novel roles of eIF3 and HCR1 in stop codon recognition, defining a communication bridge between the initiation and termination/recycling phases of translation.


Subject(s)
Codon, Terminator/genetics , Eukaryotic Initiation Factor-3/genetics , Peptide Chain Termination, Translational , Peptide Initiation Factors/genetics , Protein Biosynthesis , Saccharomyces cerevisiae Proteins/genetics , ATP-Binding Cassette Transporters/genetics , Amino Acid Sequence , Mutation , Protein Binding , Saccharomyces cerevisiae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...