Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 186
Filter
1.
Eur Heart J ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747976

ABSTRACT

BACKGROUND AND AIMS: Brugada syndrome (BrS) is an inherited arrhythmia with a higher disease prevalence and more lethal arrhythmic events in Asians than in Europeans. Genome-wide association studies (GWAS) have revealed its polygenic architecture mainly in European populations. The aim of this study was to identify novel BrS-associated loci and to compare allelic effects across ancestries. METHODS: A GWAS was conducted in Japanese participants, involving 940 cases and 1634 controls, followed by a cross-ancestry meta-analysis of Japanese and European GWAS (total of 3760 cases and 11 635 controls). The novel loci were characterized by fine-mapping, gene expression, and splicing quantitative trait associations in the human heart. RESULTS: The Japanese-specific GWAS identified one novel locus near ZSCAN20 (P = 1.0 × 10-8), and the cross-ancestry meta-analysis identified 17 association signals, including six novel loci. The effect directions of the 17 lead variants were consistent (94.1%; P for sign test = 2.7 × 10-4), and their allelic effects were highly correlated across ancestries (Pearson's R = .91; P = 2.9 × 10-7). The genetic risk score derived from the BrS GWAS of European ancestry was significantly associated with the risk of BrS in the Japanese population [odds ratio 2.12 (95% confidence interval 1.94-2.31); P = 1.2 × 10-61], suggesting a shared genetic architecture across ancestries. Functional characterization revealed that a lead variant in CAMK2D promotes alternative splicing, resulting in an isoform switch of calmodulin kinase II-δ, favouring a pro-inflammatory/pro-death pathway. CONCLUSIONS: This study demonstrates novel susceptibility loci implicating potentially novel pathogenesis underlying BrS. Despite differences in clinical expressivity and epidemiology, the polygenic architecture of BrS was substantially shared across ancestries.

2.
HGG Adv ; 5(2): 100270, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38219013

ABSTRACT

Long QT syndrome (LQTS), caused by the dysfunction of cardiac ion channels, increases the risk of sudden death in otherwise healthy young people. For many variants in LQTS genes, there is insufficient evidence to make a definitive genetic diagnosis. We have established a robust functional patch-clamp assay to facilitate classification of missense variants in KCNH2, one of the key LQTS genes. A curated set of 30 benign and 30 pathogenic missense variants were used to establish the range of normal and abnormal function. The extent to which variants reduced protein function was quantified using Z scores, the number of standard deviations from the mean of the normalized current density of the set of benign variant controls. A Z score of -2 defined the threshold for abnormal loss of function, which corresponds to 55% wild-type function. More extreme Z scores were observed for variants with a greater loss-of-function effect. We propose that the Z score for each variant can be used to inform the application and weighting of abnormal and normal functional evidence criteria (PS3 and BS3) within the American College of Medical Genetics and Genomics variant classification framework. The validity of this approach was demonstrated using a series of 18 KCNH2 missense variants detected in a childhood onset LQTS cohort, where the level of function assessed using our assay correlated to the Schwartz score (a scoring system used to quantify the probability of a clinical diagnosis of LQTS) and the length of the corrected QT (QTc) interval.


Subject(s)
Long QT Syndrome , Mutation, Missense , Child , Humans , Death, Sudden , ERG1 Potassium Channel/genetics , Heart , Long QT Syndrome/diagnosis
3.
Circ Res ; 134(1): 46-59, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38095085

ABSTRACT

BACKGROUND: Brugada syndrome is associated with loss-of-function SCN5A variants, yet these account for only ≈20% of cases. A recent genome-wide association study identified a novel locus within MAPRE2, which encodes EB2 (microtubule end-binding protein 2), implicating microtubule involvement in Brugada syndrome. METHODS: A mapre2 knockout zebrafish model was generated using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated protein 9) and validated by Western blot. Larval hearts at 5 days post-fertilization were isolated for voltage mapping and immunocytochemistry. Adult fish hearts were used for ECG, patch clamping, and immunocytochemistry. Morpholinos were injected into embryos at 1-cell stage for knockdown experiments. A transgenic zebrafish line with cdh2 tandem fluorescent timer was used to study adherens junctions. Microtubule plus-end tracking and patch clamping were performed in human induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) with MAPRE2 knockdown and knockout, respectively. RESULTS: Voltage mapping of mapre2 knockout hearts showed a decrease in ventricular maximum upstroke velocity of the action potential and conduction velocity, suggesting loss of cardiac voltage-gated sodium channel function. ECG showed QRS prolongation in adult knockout fish, and patch clamping showed decreased sodium current density in knockout ventricular myocytes and arrhythmias in knockout iPSC-CMs. Confocal imaging showed disorganized adherens junctions and mislocalization of mature Ncad (N-cadherin) with mapre2 loss of function, associated with a decrease of detyrosinated tubulin. MAPRE2 knockdown in iPSC-CMs led to an increase in microtubule growth velocity and distance, indicating changes in microtubule dynamics. Finally, knockdown of ttl encoding tubulin tyrosine ligase in mapre2 knockout larvae rescued tubulin detyrosination and ventricular maximum upstroke velocity of the action potential. CONCLUSIONS: Genetic ablation of mapre2 led to a decrease in voltage-gated sodium channel function, a hallmark of Brugada syndrome, associated with disruption of adherens junctions, decrease of detyrosinated tubulin as a marker of microtubule stability, and changes in microtubule dynamics. Restoration of the detyrosinated tubulin fraction with ttl knockdown led to rescue of voltage-gated sodium channel-related functional parameters in mapre2 knockout hearts. Taken together, our study implicates microtubule dynamics in the modulation of ventricular conduction.


Subject(s)
Brugada Syndrome , Induced Pluripotent Stem Cells , Voltage-Gated Sodium Channels , Animals , Humans , Action Potentials , Brugada Syndrome/genetics , Brugada Syndrome/metabolism , Genome-Wide Association Study , Induced Pluripotent Stem Cells/metabolism , Microtubule-Associated Proteins/genetics , Microtubules/metabolism , Myocytes, Cardiac/metabolism , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Tubulin/genetics , Tubulin/metabolism , Voltage-Gated Sodium Channels/metabolism , Zebrafish/genetics , Zebrafish/metabolism
4.
Int J Mol Sci ; 24(21)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37958923

ABSTRACT

Inherited forms of arrhythmogenic and dilated cardiomyopathy (ACM and DCM) are characterized by variable disease expression and age-related penetrance. Calcium (Ca2+) is crucially important for proper cardiac function, and dysregulation of Ca2+ homeostasis seems to underly cardiomyopathy etiology. A polymorphism, c.286T>G p.(Ser96Ala), in the gene encoding the histidine-rich Ca2+ binding (HRC) protein, relevant for sarcoplasmic reticulum Ca2+ cycling, has previously been associated with a marked increased risk of life-threatening arrhythmias among idiopathic DCM patients. Following this finding, we investigated whether p.(Ser96Ala) affects major cardiac disease manifestations in carriers of the phospholamban (PLN) c.40_42delAGA; p.(Arg14del) pathogenic variant (cohort 1); patients diagnosed with, or predisposed to, ACM (cohort 2); and DCM patients (cohort 3). We found that the allele frequency of the p.(Ser96Ala) polymorphism was similar across the general European-American population (control cohort, 40.3-42.2%) and the different cardiomyopathy cohorts (cohorts 1-3, 40.9-43.9%). Furthermore, the p.(Ser96Ala) polymorphism was not associated with life-threatening arrhythmias or heart failure-related events across various patient cohorts. We therefore conclude that there is a lack of evidence supporting the important role of the HRC p.(Ser96Ala) polymorphism as a modifier in cardiomyopathy, refuting previous findings. Further research is required to identify bona fide genomic predictors for the stratification of cardiomyopathy patients and their risk for life-threatening outcomes.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Dilated , Humans , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Calcium/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cardiomyopathies/genetics , Cardiomyopathy, Dilated/genetics , Histidine/genetics , Polymorphism, Genetic
5.
Circ Genom Precis Med ; 16(6): e004200, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38014537

ABSTRACT

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is an important cause of sudden cardiac death associated with heterogeneous phenotypes, but there is no systematic framework for classifying morphology or assessing associated risks. Here, we quantitatively survey genotype-phenotype associations in HCM to derive a data-driven taxonomy of disease expression. METHODS: We enrolled 436 patients with HCM (median age, 60 years; 28.8% women) with clinical, genetic, and imaging data. An independent cohort of 60 patients with HCM from Singapore (median age, 59 years; 11% women) and a reference population from the UK Biobank (n=16 691; mean age, 55 years; 52.5% women) were also recruited. We used machine learning to analyze the 3-dimensional structure of the left ventricle from cardiac magnetic resonance imaging and build a tree-based classification of HCM phenotypes. Genotype and mortality risk distributions were projected on the tree. RESULTS: Carriers of pathogenic or likely pathogenic variants for HCM had lower left ventricular mass, but greater basal septal hypertrophy, with reduced life span (mean follow-up, 9.9 years) compared with genotype negative individuals (hazard ratio, 2.66 [95% CI, 1.42-4.96]; P<0.002). Four main phenotypic branches were identified using unsupervised learning of 3-dimensional shape: (1) nonsarcomeric hypertrophy with coexisting hypertension; (2) diffuse and basal asymmetrical hypertrophy associated with outflow tract obstruction; (3) isolated basal hypertrophy; and (4) milder nonobstructive hypertrophy enriched for familial sarcomeric HCM (odds ratio for pathogenic or likely pathogenic variants, 2.18 [95% CI, 1.93-2.28]; P=0.0001). Polygenic risk for HCM was also associated with different patterns and degrees of disease expression. The model was generalizable to an independent cohort (trustworthiness, M1: 0.86-0.88). CONCLUSIONS: We report a data-driven taxonomy of HCM for identifying groups of patients with similar morphology while preserving a continuum of disease severity, genetic risk, and outcomes. This approach will be of value in understanding the causes and consequences of disease diversity.


Subject(s)
Cardiomyopathy, Hypertrophic, Familial , Cardiomyopathy, Hypertrophic , Humans , Female , Middle Aged , Male , Phenotype , Genotype , Hypertrophy/complications
8.
Card Electrophysiol Clin ; 15(3): 273-283, 2023 09.
Article in English | MEDLINE | ID: mdl-37558298

ABSTRACT

Brugada syndrome (BrS) is an inherited arrhythmia syndrome with distinctive electrocardiographic abnormalities in the right precordial leads and predisposes to ventricular arrhythmias and sudden cardiac death in otherwise healthy patients. Its complex genetic architecture and pathophysiological mechanism are not yet completely understood, and risk stratification remains challenging, particularly in patients at intermediate risk of arrhythmic events. Further understanding of its complex genetic architecture may help improving future risk stratification, and advances in management may contribute to alternatives to implantable cardioverter-defibrillators. Here, the authors review the latest insights and developments in BrS.


Subject(s)
Brugada Syndrome , Catheter Ablation , Defibrillators, Implantable , Humans , Electrocardiography , Brugada Syndrome/genetics , Death, Sudden, Cardiac , Risk Assessment
9.
Sci Rep ; 13(1): 12360, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37524845

ABSTRACT

Variant imputation, a common practice in genome-wide association studies, relies on reference panels to infer unobserved genotypes. Multiple public reference panels are currently available with variations in size, sequencing depth, and represented populations. Currently, limited data exist regarding the performance of public reference panels when used in an imputation of populations underrepresented in the reference panel. Here, we compare the performance of various public reference panels: 1000 Genomes Project, Haplotype Reference Consortium, GenomeAsia 100 K, and the recent Trans-Omics for Precision Medicine (TOPMed) program, when used in an imputation of samples from the Thai population. Genotype yields were assessed, and imputation accuracies were examined by comparison with high-depth whole genome sequencing data of the same sample. We found that imputation using the TOPMed panel yielded the largest number of variants (~ 271 million). Despite being the smallest in size, GenomeAsia 100 K achieved the best imputation accuracy with a median genotype concordance rate of 0.97. For rare variants, GenomeAsia 100 K also offered the best accuracy, although rare variants were less accurately imputable than common variants (30.3% reduction in concordance rates). The high accuracy observed when using GenomeAsia 100 K is likely attributable to the diverse representation of populations genetically similar to the study cohort emphasizing the benefits of sequencing populations classically underrepresented in human genomics.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Humans , Genotype , Haplotypes , Genome, Human , Gene Frequency
10.
medRxiv ; 2023 May 26.
Article in English | MEDLINE | ID: mdl-37292618

ABSTRACT

Background: An important contributor to the decreased life expectancy of individuals with schizophrenia is sudden cardiac death. While arrhythmic disorders play an important role in this, the nature of the relation between schizophrenia and arrhythmia is not fully understood. Methods: We leveraged summary-level data of large-scale genome-wide association studies of schizophrenia (53,386 cases 77,258 controls), arrhythmic disorders (atrial fibrillation, 55,114 cases 482,295 controls; Brugada syndrome, 2,820 cases 10,001 controls) and electrocardiogram traits (heart rate (variability), PR interval, QT interval, JT interval, and QRS duration, n=46,952-293,051). First, we examined shared genetic liability by assessing global and local genetic correlations and conducting functional annotation. Next, we explored bidirectional causal relations between schizophrenia and arrhythmic disorders and electrocardiogram traits using Mendelian randomization. Outcomes: There was no evidence for global genetic correlations, except between schizophrenia and Brugada (rg=0·14, p=4·0E-04). In contrast, strong positive and negative local genetic correlations between schizophrenia and all cardiac traits were found across the genome. In the strongest associated regions, genes related to immune system and viral response mechanisms were overrepresented. Mendelian randomization indicated a causal, increasing effect of liability to schizophrenia on Brugada syndrome (OR=1·15, p=0·009) and heart rate during activity (beta=0·25, p=0·015). Interpretation: While there was little evidence for global genetic correlations, specific genomic regions and biological pathways important for both schizophrenia and arrhythmic disorders and electrocardiogram traits emerged. The putative causal effect of liability to schizophrenia on Brugada warrants increased cardiac monitoring and potentially early medical intervention in patients with schizophrenia. Funding: European Research Council Starting Grant.

11.
Circ Genom Precis Med ; 16(4): 328-336, 2023 08.
Article in English | MEDLINE | ID: mdl-37199186

ABSTRACT

BACKGROUND: Genetic variants in TNNI3K (troponin-I interacting kinase) have previously been associated with dilated cardiomyopathy (DCM), cardiac conduction disease, and supraventricular tachycardias. However, the link between TNNI3K variants and these cardiac phenotypes shows a lack of consensus concerning phenotype and protein function. METHODS: We describe a systematic retrospective study of a cohort of patients undergoing genetic testing for cardiac arrhythmias and cardiomyopathy including TNNI3K. We further performed burden testing of TNNI3K in the UK Biobank. For 2 novel TNNI3K variants, we tested cosegregation. TNNI3K kinase function was estimated by TNNI3K autophosphorylation assays. RESULTS: We demonstrate enrichment of rare coding TNNI3K variants in DCM patients in the Amsterdam cohort. In the UK Biobank, we observed an association between TNNI3K missense (but not loss-of-function) variants and DCM and atrial fibrillation. Furthermore, we demonstrate genetic segregation for 2 rare variants, TNNI3K-p.Ile512Thr and TNNI3K-p.His592Tyr, with phenotypes consisting of DCM, cardiac conduction disease, and supraventricular tachycardia, together with increased autophosphorylation. In contrast, TNNI3K-p.Arg556_Asn590del, a likely benign variant, demonstrated depleted autophosphorylation. CONCLUSIONS: Our findings demonstrate an increased burden of rare coding TNNI3K variants in cardiac patients with DCM. Furthermore, we present 2 novel likely pathogenic TNNI3K variants with increased autophosphorylation, suggesting that enhanced autophosphorylation is likely to drive pathogenicity.


Subject(s)
Cardiomyopathy, Dilated , Humans , Cardiomyopathy, Dilated/diagnosis , Cardiomyopathy, Dilated/genetics , Retrospective Studies , Arrhythmias, Cardiac/genetics , Genetic Testing , Cardiac Conduction System Disease/genetics , Protein Serine-Threonine Kinases/genetics
12.
Physiol Rev ; 103(3): 2039-2055, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36634218

ABSTRACT

Genome-wide association studies (GWAS) aim to identify common genetic variants that are associated with traits and diseases. Since 2005, more than 5,000 GWAS have been published for almost as many traits. These studies have offered insights into the loci and genes underlying phenotypic traits, have highlighted genetic correlations across traits and diseases, and are beginning to demonstrate clinical utility by identifying individuals at increased risk for common diseases. GWAS have been widely utilized across cardiovascular diseases and associated phenotypic traits, with insights facilitated by multicenter registry studies and large biobank data sets. In this review, we describe how GWAS have informed the genetic architecture of cardiovascular diseases and the insights they have provided into disease pathophysiology, using archetypal conditions for both common and rare diseases. We also describe how biobank data sets can complement disease-specific studies, particularly for rarer cardiovascular diseases, and how findings from GWAS have the potential to impact on clinical care. Finally, we discuss the outstanding challenges facing research in this field and how they can be addressed.


Subject(s)
Cardiovascular Diseases , Genome-Wide Association Study , Humans , Cardiovascular Diseases/genetics , Phenotype , Genetic Predisposition to Disease , Multicenter Studies as Topic
13.
JAMA Netw Open ; 6(1): e2252724, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36696110

ABSTRACT

Importance: Sudden infant death syndrome (SIDS) remains a leading cause of death during the first year of life. The etiology of SIDS is complex and remains largely unknown. Objective: To evaluate whether siblings of children who died of SIDS have a higher risk of SIDS compared with the general pediatric population. Design, Setting, and Participants: This register-based cohort study used Danish nationwide registers. Participants were all infants (<1 year) in Denmark between January 1, 1978, and December 31, 2016, including siblings of children who died of SIDS. Siblings were followed up from the index cases' date of SIDS, date of birth, or immigration, whichever came first, and until age 1 year, emigration, developing SIDS, death, or study end. The median (IQR) follow-up was 1 (1-1) year. Data analysis was conducted from January 2017 to October 2022. Main Outcomes and Measures: Standardized incidence ratios (SIRs) of SIDS were calculated with Poisson regression models relative to the general population. Results: In a population of 2 666 834 consecutive births (1 395 199 [52%] male), 1540 infants died of SIDS (median [IQR] age at SIDS, 3 [2-4] months) during a 39-year study period. A total of 2384 younger siblings (cases) to index cases (first sibling with SIDS) were identified. A higher rate of SIDS was observed among siblings compared with the general population, with SIRs of 4.27 (95% CI, 2.13-8.53) after adjustment for sex, age, and calendar year and of 3.50 (95% CI, 1.75-7.01) after further adjustment for mother's age (<29 years vs ≥29 years) and education (high school vs after high school). Conclusions and Relevance: In this nationwide study, having a sibling who died of SIDS was associated with a 4-fold higher risk of SIDS compared with the general population. Shared genetic and/or environmental factors may contribute to the observed clustering of SIDS. The family history of SIDS should be considered when assessing SIDS risk in clinical settings. A multidisciplinary genetic evaluation of families with SIDS could provide additional evidence.


Subject(s)
Siblings , Sudden Infant Death , Infant , Female , Humans , Child , Male , Adult , Sudden Infant Death/epidemiology , Sudden Infant Death/etiology , Cohort Studies , Risk Factors , Denmark/epidemiology
14.
JACC Clin Electrophysiol ; 9(1): 124-138, 2023 01.
Article in English | MEDLINE | ID: mdl-36697193

ABSTRACT

Abnormal cardiac repolarization is at the basis of life-threatening arrhythmias in various congenital and acquired cardiac diseases. Dysfunction of ion channels involved in repolarization at the cellular level are often the underlying cause of the repolarization abnormality. The expression pattern of the gene encoding the affected ion channel dictates its impact on the shape of the T-wave and duration of the QT interval, thereby setting the stage for both the occurrence of the trigger and the substrate for maintenance of the arrhythmia. Here we discuss how research into the genetic and electrophysiological basis of repolarization has provided us with insights into cardiac repolarization in health and disease and how this in turn may provide the basis for future improved patient-specific management.


Subject(s)
Arrhythmias, Cardiac , Heart , Humans , Arrhythmias, Cardiac/genetics , Electrophysiological Phenomena
15.
Hum Mol Genet ; 32(7): 1072-1082, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36269083

ABSTRACT

BACKGROUND: Variants in KCNH2, encoding the human ether a-go-go (hERG) channel that is responsible for the rapid component of the cardiac delayed rectifier K+ current (IKr), are causal to long QT syndrome type 2 (LQTS2). We identified eight index patients with a new variant of unknown significance (VUS), KCNH2:c.2717C > T:p.(Ser906Leu). We aimed to elucidate the biophysiological effect of this variant, to enable reclassification and consequent clinical decision-making. METHODS: A genotype-phenotype overview of the patients and relatives was created. The biophysiological effects were assessed independently by manual-, and automated calibrated patch clamp. HEK293a cells expressing (i) wild-type (WT) KCNH2, (ii) KCNH2-p.S906L alone (homozygous, Hm) or (iii) KCNH2-p.S906L in combination with WT (1:1) (heterozygous, Hz) were used for manual patching. Automated patch clamp measured the variants function against known benign and pathogenic variants, using Flp-In T-rex HEK293 KCNH2-variant cell lines. RESULTS: Incomplete penetrance of LQTS2 in KCNH2:p.(Ser906Leu) carriers was observed. In addition, some patients were heterozygous for other VUSs in CACNA1C, PKP2, RYR2 or AKAP9. The phenotype of carriers of KCNH2:p.(Ser906Leu) ranged from asymptomatic to life-threatening arrhythmic events. Manual patch clamp showed a reduced current density by 69.8 and 60.4% in KCNH2-p.S906L-Hm and KCNH2-p.S906L-Hz, respectively. The time constant of activation was significantly increased with 80.1% in KCNH2-p.S906L-Hm compared with KCNH2-WT. Assessment of KCNH2-p.S906L-Hz by calibrated automatic patch clamp assay showed a reduction in current density by 35.6%. CONCLUSION: The reduced current density in the KCNH2-p.S906L-Hz indicates a moderate loss-of-function. Combined with the reduced penetrance and variable phenotype, we conclude that KCNH2:p.(Ser906Leu) is a low penetrant likely pathogenic variant for LQTS2.


Subject(s)
Long QT Syndrome , Humans , Long QT Syndrome/genetics , Long QT Syndrome/metabolism , Ether-A-Go-Go Potassium Channels/genetics , HEK293 Cells , Penetrance , Heart , ERG1 Potassium Channel/genetics
16.
Int J Cardiol ; 371: 153-159, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36108765

ABSTRACT

BACKGROUND: Clinical factors are used to estimate late complication risk in adults after atrial switch operation (AtrSO) for transposition of the great arteries (TGA), but heterogeneity in clinical course remains. We studied whether common genetic variants are associated with outcome and add value to a clinical risk score in TGA-AtrSO patients. METHODS AND RESULTS: This multicenter study followed 133 TGA-AtrSO patients (aged 28 [IQR 24-35] years) for 13 (IQR 9-16) years and examined the association of genome-wide single-nucleotide polymorphisms (SNPs) with a composite endpoint of symptomatic ventricular arrhythmia, heart failure hospitalization, ventricular assist device implantation, heart transplantation, or mortality. Thirty-two patients (24%) reached the endpoint. The genome-wide association study yielded one genome-wide significant (p < 1 × 10-8) locus and 18 suggestive loci (p < 1 × 10-5). A genetic risk score constructed on the basis of independent SNPs with p < 1 × 10-5 was associated with outcome after correction for the clinical risk score (HR = 1.26/point increase [95%CI 1.17-1.35]). Risk stratification improved with a combined risk score (clinical score + genetic score) compared to the clinical score alone (p = 2 × 10-16, C-statistic 0.95 vs 0.85). In 51 patients with a clinical intermediate (5-20%) 5-year risk of events, the combined score reclassified 32 patients to low (<5%) and 5 to high (>20%) risk. Stratified by the combined score, observed 5-year event-free survival was 100%, 79% and 31% for low, intermediate, and high-risk patients, respectively. CONCLUSIONS: Common genetic variants may explain some variation in the clinical course in TGA-AtrSO and improve risk stratification over clinical factors alone, especially in patients at intermediate clinical risk. These findings support the hypothesis that including genetic variants in risk assessment may be beneficial.


Subject(s)
Arterial Switch Operation , Transposition of Great Vessels , Adult , Humans , Arterial Switch Operation/adverse effects , Transposition of Great Vessels/genetics , Transposition of Great Vessels/surgery , Transposition of Great Vessels/complications , Genome-Wide Association Study , Follow-Up Studies , Arteries , Risk Assessment , Disease Progression , Retrospective Studies
17.
Nat Cardiovasc Res ; 2(11): 1078-1094, 2023.
Article in English | MEDLINE | ID: mdl-38666070

ABSTRACT

Discrete categorization of Mendelian disease genes into dominant and recessive models often oversimplifies their underlying genetic architecture. Cardiomyopathies (CMs) are genetic diseases with complex etiologies for which an increasing number of recessive associations have recently been proposed. Here, we comprehensively analyze all published evidence pertaining to biallelic variation associated with CM phenotypes to identify high-confidence recessive genes and explore the spectrum of monoallelic and biallelic variant effects in established recessive and dominant disease genes. We classify 18 genes with robust recessive association with CMs, largely characterized by dilated phenotypes, early disease onset and severe outcomes. Several of these genes have monoallelic association with disease outcomes and cardiac traits in the UK Biobank, including LMOD2 and ALPK3 with dilated and hypertrophic CM, respectively. Our data provide insights into the complex spectrum of dominance and recessiveness in genetic heart disease and demonstrate how such approaches enable the discovery of unexplored genetic associations.

SELECTION OF CITATIONS
SEARCH DETAIL
...