Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS J ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38923213

ABSTRACT

External stress disrupts the balance of protein homeostasis, necessitating the involvement of heat shock proteins (Hsps) in restoring equilibrium and ensuring cellular survival. The thermoacidophilic crenarchaeon Sulfolobus acidocaldarius, lacks the conventional Hsp100, Hsp90, and Hsp70, relying solely on a single ATP-dependent Group II chaperonin, Hsp60, comprising three distinct subunits (α, ß, and γ) to refold unfolded substrates and maintain protein homeostasis. Hsp60 forms three different complexes, namely Hsp60αßγ, Hsp60αß, and Hsp60ß, at temperatures of 60 °C, 75 °C, and 90 °C, respectively. This study delves into the intricacies of Hsp60 complexes in S. acidocaldarius, uncovering their ability to form oligomeric structures in the presence of ATP. The recognition of substrates by Hsp60 involves hydrophobic interactions, and the subsequent refolding process occurs in an ATP-dependent manner through charge-driven interactions. Furthermore, the Hsp60ß homo-oligomeric complex can protect the archaeal and eukaryotic membrane from stress-induced damage. Hsp60 demonstrates nested cooperativity in ATP hydrolysis activity, where MWC-type cooperativity is nested within KNF-type cooperativity. Remarkably, during ATP hydrolysis, Hsp60ß, and Hsp60αß complexes exhibit a mosaic behavior, aligning with characteristics observed in both Group I and Group II chaperonins, adding a layer of complexity to their functionality.

2.
Mol Plant Pathol ; 24(9): 1063-1077, 2023 09.
Article in English | MEDLINE | ID: mdl-37434353

ABSTRACT

Small heat shock proteins (sHsps) play diverse roles in the stress response and maintenance of cellular functions. The Ustilago maydis genome codes for few sHsps. Among these, Hsp12 has previously been demonstrated to be involved in the pathogenesis of the fungus by our group. In the present study we further investigated the biological function of the protein in the pathogenic development of U. maydis. Analysis of the primary amino acid sequence of Hsp12 in combination with spectroscopic methods to analyse secondary protein structures revealed an intrinsically disordered nature of the protein. We also carried out detailed analysis on the protein aggregation prevention activity associated with Hsp12. Our data suggest Hsp12 has trehalose-dependent protein aggregation prevention activity. Through assaying the interaction of Hsp12 with lipid membranes in vitro we also showed the ability of U. maydis Hsp12 to induce stability in lipid vesicles. U. maydis hsp12 deletion mutants exhibited defects in the endocytosis process and delayed completion of the pathogenic life cycle. Therefore, U. maydis Hsp12 contributes to the pathogenic development of the fungus through its ability to relieve proteotoxic stress during infection as well as its membrane-stabilizing function.


Subject(s)
Basidiomycota , Ustilago , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Protein Aggregates , Basidiomycota/metabolism , Ustilago/genetics , Ustilago/metabolism , Lipids , Fungal Proteins/genetics , Fungal Proteins/metabolism
3.
Res Microbiol ; 174(8): 104106, 2023.
Article in English | MEDLINE | ID: mdl-37516156

ABSTRACT

Sulfolobus acidocaldarius, a thermoacidophilic crenarchaeon, frequently encounters temperature fluctuations, oxidative stress, and nutrient limitations in its environment. Here, we employed a high-throughput transcriptomic analysis to examine how the gene expression of S. acidocaldarius changes when exposed to high temperatures (92 °C). The data obtained was subsequently validated using quantitative reverse transcription-PCR (qRT-PCR) analysis. Our particular focus was on genes that are involved in the heat shock response, type-II Toxin-Antitoxin systems, and putative transcription factors. To investigate how S. acidocaldarius adapts to multiple stressors, we assessed the expression of these selected genes under oxidative and nutrient stresses using qRT-PCR analysis. The results demonstrated that the gene thß encoding the ß subunit of the thermosome, as well as hsp14 and hsp20, play crucial roles in the majority of stress conditions. Furthermore, we observed overexpression of at least eight different TA pairs belonging to the type II TA systems under all stress conditions. Additionally, four common transcription factors: FadR, TFEß, CRISPR loci binding protein, and HTH family protein were consistently overexpressed across all stress conditions, indicating their significant role in managing stress. Overall, this work provides the first insight into molecular players involved in the cross-stress adaptation of S. acidocaldarius.


Subject(s)
Sulfolobus acidocaldarius , Sulfolobus acidocaldarius/genetics , Sulfolobus acidocaldarius/metabolism , Heat-Shock Response , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Yeast ; 40(2): 102-116, 2023 02.
Article in English | MEDLINE | ID: mdl-36562128

ABSTRACT

Ustilago maydis expresses a number of proteases during its pathogenic lifecycle. Some of the proteases including both intracellular and extracellular ones have previously been shown to influence the virulence of the pathogen. However, any role of secreted proteases in the sporulation process of U. maydis have not been explored earlier. In this study we have investigated the biological function of one such secreted protease, Ger1 belonging to aspartic protease A1 family. An assessment of the real time expression of ger1 revealed an infection specific expression of the protein especially during late phases of infection. We also evaluated any contribution of the protein in the pathogenicity of the fungus. Our data revealed an involvement of Ger1 in the sporulation and spore germination processes of U. maydis. Ger1 also showed positive influence on the pathogenicity of the fungus and accordingly the ger1 deletion mutant exhibited reduced pathogenicity. The study also demonstrated the protease activity associated with Ger1 to be essential for its biological function. Fluorescence microscopy of maize plants infected with U. maydis cells expressing Ger1-mcherry-HA also revealed that Ger1 is efficiently secreted within maize apoplast.


Subject(s)
Aspartic Acid Proteases , Basidiomycota , Ustilago , Aspartic Acid Proteases/genetics , Aspartic Acid Proteases/metabolism , Ustilago/genetics , Ustilago/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Spores/metabolism
5.
Front Mol Biosci ; 9: 832160, 2022.
Article in English | MEDLINE | ID: mdl-35647036

ABSTRACT

Small heat shock proteins (sHsp) are a ubiquitous group of ATP-independent chaperones found in all three domains of life. Although sHsps in bacteria and eukaryotes have been studied extensively, little information was available on their archaeal homologs until recently. Interestingly, archaeal heat shock machinery is strikingly simplified, offering a minimal repertoire of heat shock proteins to mitigate heat stress. sHsps play a crucial role in preventing protein aggregation and holding unfolded protein substrates in a folding-competent form. Besides protein aggregation protection, archaeal sHsps have been shown recently to stabilize membranes and contribute to transferring captured substrate proteins to chaperonin for refolding. Furthermore, recent studies on archaeal sHsps have shown that environment-induced oligomeric plasticity plays a crucial role in maintaining their functional form. Despite being prokaryotes, the archaeal heat shock protein repository shares several features with its highly sophisticated eukaryotic counterpart. The minimal nature of the archaeal heat shock protein repository offers ample scope to explore the function and regulation of heat shock protein(s) to shed light on their evolution. Moreover, similar structural dynamics of archaeal and human sHsps have made the former an excellent system to study different chaperonopathies since archaeal sHsps are more stable under in vitro experiments.

6.
J Virol ; 96(5): e0219021, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35044213

ABSTRACT

Bat influenza viruses are genetically distant from classical influenza A viruses (IAVs) and show distinct functional differences in their surface antigens. Nevertheless, any comparative analyses between bat and classical IAV RNA polymerases or their specific subunits are yet to be performed. In this work, we have identified signature residues present in the bat influenza virus polymerase which are responsible for its altered fitness in comparison to the classical IAVs. Through comparative sequence and structural analysis, we have identified specific positions in the PB2 subunit of the polymerase, with differential amino acid preferences among bat and nonbat IAVs. Functional screening helped us to focus upon the previously uncharacterized PB2-282 residue, which is serine in bat virus but harbors highly conserved glutamic acid in classical IAVs. Introduction of E282S mutation in the human-adapted PB2 (influenza A/H1N1/WSN/1933) drastically reduces polymerase activity and replication efficiency of the virus in human, bat, and canine cells. Interestingly, this newly identified PB2-282 residue within an evolutionary conserved "S-E-S" motif, present across different genera of influenza viruses and serving as a key regulator of RNA synthesis activity of the polymerase. In contrast, bat influenza viruses harbor an atypical "S-S-T" motif at the same position of PB2, alteration of which with the human-like "S-E-T" motif significantly enhances its (H17N10/Guatemala/164/2009) polymerase activity in human cells. Together, our data indicate that the PB2-S282 residue may serve as an inherent restriction element of the bat virus polymerase, limiting its activity in other host species. IMPORTANCE Influenza A viruses are known for their ability to perform cross-species transmission, facilitated by amino acid alterations either in the surface antigen hemagglutinin (HA) or in the polymerase subunit PB2. Recent isolation of influenza A-like viruses from bats raised concern about their epizootic and zoonotic potential. Here, we identify a novel species-specific signature present within the influenza virus polymerase that may serve as a key factor in adaptation of influenza viruses from bat to nonbat host species. The PB2-282 residue, which harbors a highly conserved glutamic acid for influenza viruses across all genera (A, B, C, and D), encompasses an atypical serine in the case of bat influenza viruses. Our data show that the human-adapted polymerase, harboring a bat-specific signature (PB2-S282,) performs poorly, while bat PB2 protein, harboring a human-specific signature (PB2-E282), shows increased fitness in human cells.


Subject(s)
Influenza A virus , Orthomyxoviridae Infections , RNA-Dependent RNA Polymerase , Viral Proteins , Adaptation, Physiological/genetics , Amino Acid Motifs , Animals , Cell Line , Chiroptera , Dogs , Humans , Influenza A virus/genetics , Influenza A virus/metabolism , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/virology , RNA/metabolism , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Species Specificity , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
7.
FEBS J ; 289(4): 1080-1104, 2022 02.
Article in English | MEDLINE | ID: mdl-34637594

ABSTRACT

Heat shock proteins maintain protein homeostasis and facilitate the survival of an organism under stress. Archaeal heat shock machinery usually consists of only sHsps, Hsp70, and Hsp60. Moreover, Hsp70 is absent in thermophilic and hyperthermophilic archaea. In the absence of Hsp70, how aggregating protein substrates are transferred to Hsp60 for refolding remains elusive. Here, we investigated the crosstalk in the heat shock response pathway of thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. In the present study, we biophysically and biochemically characterized one of the small heat shock proteins, Hsp14, of S. acidocaldarius. Moreover, we investigated its ability to interact with Hsp20 and Hsp60 to facilitate the substrate proteins' folding under stress conditions. Like Hsp20, we demonstrated that the dimer is the active form of Hsp14, and it forms an oligomeric storage form at a higher temperature. More importantly, the dynamics of the Hsp14 oligomer are maintained by rapid subunit exchange between the dimeric states, and the rate of subunit exchange increases with increasing temperature. We also tested the ability of Hsp14 to form hetero-oligomers via subunit exchange with Hsp20. We observed hetero-oligomer formation only at higher temperatures (50 °C-70 °C). Furthermore, experiments were performed to investigate the interaction between small heat shock proteins and Hsp60. We demonstrated an enthalpy-driven direct physical interaction between Hsp14 and Hsp60. Our results revealed that Hsp14 could transfer sHsp-captured substrate proteins to Hsp60, which then refolds them back to their active form.


Subject(s)
Heat-Shock Proteins, Small/metabolism , Sulfolobus acidocaldarius/genetics , Thermosomes/metabolism , Heat-Shock Proteins, Small/genetics , Heat-Shock Proteins, Small/isolation & purification , Hydrophobic and Hydrophilic Interactions , Muramidase/metabolism , Protein Aggregates , Sulfolobus acidocaldarius/metabolism , Temperature , Thermosomes/genetics , Thermosomes/isolation & purification
8.
Biochem Biophys Res Commun ; 566: 53-58, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34116357

ABSTRACT

The signal recognition particle (SRP) plays an essential role in protein translocation across biological membranes. Stable complexation of two GTPases in the signal recognition particle (SRP) and its receptor (SR) control the delivery of nascent polypeptide to the membrane translocon. In archaea, protein targeting is mediated by the SRP54/SRP19/7S RNA ribonucleoprotein complex (SRP) and the FtsY protein (SR). In the present study, using fluorescence resonance energy transfer (FRET), we demonstrate that archaeal 7S RNA stabilizes the SRP54·FtsY targeting complex (TC). Moreover, we show that archaeal SRP19 further assists 7S RNA in stabilizing the targeting complex (TC). These results suggest that archaeal 7S RNA and SRP19 modulate the conformation of the targeting complex and thereby reinforce TC to execute protein translocation via concomitant GTP hydrolysis.


Subject(s)
Archaeal Proteins/metabolism , RNA, Small Cytoplasmic/metabolism , Signal Recognition Particle/metabolism , Sulfolobus acidocaldarius/metabolism , Guanosine Triphosphate/metabolism , Hydrolysis , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...