Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Reprod ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954018

ABSTRACT

KEY MESSAGE: This comprehensive review underscores the application of genome editing in plant reproductive biology, including recent advances and challenges associated with it. Genome editing (GE) is a powerful technology that has the potential to accelerate crop improvement by enabling efficient, precise, and rapid engineering of plant genomes. Over the last decade, this technology has rapidly evolved from the use of meganucleases (homing endonucleases), zinc-finger nucleases, transcription activator-like effector nucleases to the use of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas), which has emerged as a popular GE tool in recent times and has been extensively used in several organisms, including plants. GE has been successfully employed in several crops to improve plant reproductive traits. Improving crop reproductive traits is essential for crop yields and securing the world's food supplies. In this review, we discuss the application of GE in various aspects of plant reproductive biology, including its potential application in haploid induction, apomixis, parthenocarpy, development of male sterile lines, and the regulation of self-incompatibility. We also discuss current challenges and future prospects of this technology for crop improvement, focusing on plant reproduction.

2.
Future Virol ; 2022 May.
Article in English | MEDLINE | ID: mdl-35747328

ABSTRACT

This review collates information on the onset of COVID-19, SARS-CoV-2 genome architecture, emergence of novel viral lineages that drove multiple waves of infection around the world and standard and fast track development of vaccines. With the passage of time, the continuously evolving SARS-CoV-2 has acquired an expanded mutational landscape. The functional characterization of spike protein mutations, the primary target of diagnostics, therapeutics and vaccines has revealed increased transmission, pathogenesis and immune escape potential in the variant lineages of the virus. The incurred mutations have also resulted in substantial viral neutralization escape to vaccines, monoclonal, polyclonal and convalescent antibodies presently in use. The present situation suggests the need for development of precise next-generation vaccines and therapeutics by targeting the more conservative genomic viral regions for providing adequate protection.

SELECTION OF CITATIONS
SEARCH DETAIL