Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 27(7)2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35408707

ABSTRACT

In the current study, Bismuth molybdate was synthesized using simple co-precipitation procedure, and their characterization was carried out by various methods such as FT-IR, SEM, and P-XRD. Furthermore, the photocatalytic degradation of Orange G (ORG) dye using synthesized catalyst under visible light irradiation was studied. Response surface Method was used for the optimization of process variables and degradation kinetics evaluated by modeling of experimental data. Based on the experimental design outcomes, the first-order model was proven as a practical correlation between selected factors and response. Further ANOVA analysis has revealed that only two out of six factors have a significant effect on ORG degradation, however ORG concentration and irradiation time indicated the significant effects sequentially. Maximum ORG degradation of approximately 96% was achieved by keeping process parameters in range, such as 1 g L-1 loading of catalyst, 50 mg L-1 concentration of ORG, 1.4 mol L-1 concentration of H2O2 at pH 7 and a temperature of 30 °C. Kinetics of ORG degradation followed the pseudo first order, and almost complete degradation was achieved within 8 h. The effectiveness of the Bi2MoO6/H2O2 photo-Fenton system in degradation reactions is due to the higher number of photo-generated e- available on the catalyst surface as a result of their ability to inhibit recombination of e- and h+ pair.


Subject(s)
Bismuth , Hydrogen Peroxide , Azo Compounds , Bismuth/chemistry , Catalysis , Light , Molybdenum , Spectroscopy, Fourier Transform Infrared
2.
Macromol Symp ; 397(1): 2000336, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34511843

ABSTRACT

The emergence of a novel Corona virus (COVID 19) originated on December 19 from China. The city of Wuhan, the capital city of Hubei province, China, is responsible for an outbreak of respiratory illness known as COVID 19 and it has been rapidly spread across the world claiming millions of lives. The sudden outbreak of novel Coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or 2019-nCoV), is a big concern for their speedy mitigation using the predictable treatment and creating its approach around the world. Researchers and doctors are in search of rapid diagnosis kit, drugs, and viral-resistant personal protective equipment (PPE) to clinical diagnosis, medication, and prevent the spread of COVID 19. A rational approach with adaptability and broad viewpoint to challenge the growing pain could be overcome by the application of appropriate technology. The nanotechnology-based approach can significantly serve the purpose of the current pandemic situation of COVID 19. But same time implementation of innovative and creative nanotech approach, there is a decisive need for the full knowledge of SARS-CoV-2 pathogenesis. Moreover, to defeat COVID 19, particularly nanotech-based system with their viral inhibitory properties to increase the effective nanotech approach is essential. In this scenario, this review aims to summarize the past, present, and future of nanotech-based systems that can be used to treat COVID 19, highlighting Nano-based compounds. Lastly, the potential application of the different category of Inorganic Nanomaterials/Inorganic organic conjugate /hybrid system and their practical applicability as suitable means for inspiring against COVID 19 has also been discussed.

SELECTION OF CITATIONS
SEARCH DETAIL