Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Clin Genet ; 106(3): 367-373, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38831697

ABSTRACT

SERPINA11 is a hitherto poorly characterised gene belonging to Clade A of the SERPIN superfamily, with unknown expression pattern and functional significance. We report a perinatal lethal phenotype in two foetuses from the same family associated with a biallelic loss of function variant in SERPINA11, and provide functional evidence to support its candidature as a Mendelian disorder. The SERPINA11 variant-associated foetal phenotype is characterised by gross and histopathological features of extracellular matrix disruption. Western blot and immunofluorescence analyses revealed SERPINA11 expression in multiple mouse tissues, with pronounced expression in the bronchiolar epithelium. We observed a significant decrease in SERPINA11 immunofluorescence in the affected foetal lung compared with a healthy gestation-matched foetus. Protein expression data from HEK293T cell lines following site-directed mutagenesis support the loss of function nature of the variant. Transcriptome analysis from the affected foetal liver indicated the possibility of reduced SERPINA11 transcript abundance. This novel serpinopathy appears to be a consequence of the loss of inhibition of serine proteases involved in extracellular matrix remodelling, revealing SERPINA11 as a protease inhibitor critical for embryonic development.


Subject(s)
Serpins , Humans , Serpins/genetics , Mice , Animals , Female , HEK293 Cells , Male , Phenotype , Fetus , Pedigree , Pregnancy
2.
Biochem Soc Trans ; 52(2): 567-580, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38629621

ABSTRACT

The maintenance of phosphate homeostasis serves as a foundation for energy metabolism and signal transduction processes in all living organisms. Inositol pyrophosphates (PP-InsPs), composed of an inositol ring decorated with monophosphate and diphosphate moieties, and inorganic polyphosphate (polyP), chains of orthophosphate residues linked by phosphoanhydride bonds, are energy-rich biomolecules that play critical roles in phosphate homeostasis. There is a complex interplay between these two phosphate-rich molecules, and they share an interdependent relationship with cellular adenosine triphosphate (ATP) and inorganic phosphate (Pi). In eukaryotes, the enzymes involved in PP-InsP synthesis show some degree of conservation across species, whereas distinct enzymology exists for polyP synthesis among different organisms. In fact, the mechanism of polyP synthesis in metazoans, including mammals, is still unclear. Early studies on PP-InsP and polyP synthesis were conducted in the slime mould Dictyostelium discoideum, but it is in the budding yeast Saccharomyces cerevisiae that a clear understanding of the interplay between polyP, PP-InsPs, and Pi homeostasis has now been established. Recent research has shed more light on the influence of PP-InsPs on polyP in mammals, and the regulation of both these molecules by cellular ATP and Pi levels. In this review we will discuss the cross-talk between PP-InsPs, polyP, ATP, and Pi in the context of budding yeast, slime mould, and mammals. We will also highlight the similarities and differences in the relationship between these phosphate-rich biomolecules among this group of organisms.


Subject(s)
Homeostasis , Inositol Phosphates , Polyphosphates , Polyphosphates/metabolism , Animals , Inositol Phosphates/metabolism , Humans , Saccharomyces cerevisiae/metabolism , Adenosine Triphosphate/metabolism , Dictyostelium/metabolism , Signal Transduction
3.
Nat Chem Biol ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664588

ABSTRACT

Reversible protein phosphorylation is a central signaling mechanism in eukaryotes. Although mass-spectrometry-based phosphoproteomics has become routine, identification of non-canonical phosphorylation has remained a challenge. Here we report a tailored workflow to detect and reliably assign protein pyrophosphorylation in two human cell lines, providing, to our knowledge, the first direct evidence of endogenous protein pyrophosphorylation. We manually validated 148 pyrophosphosites across 71 human proteins, the most heavily pyrophosphorylated of which were the nucleolar proteins NOLC1 and TCOF1. Detection was consistent with previous biochemical evidence relating the installation of the modification to inositol pyrophosphates (PP-InsPs). When the biosynthesis of PP-InsPs was perturbed, proteins expressed in this background exhibited no signs of pyrophosphorylation. Disruption of PP-InsP biosynthesis also significantly reduced rDNA transcription, potentially by lowering pyrophosphorylation on regulatory proteins NOLC1, TCOF1 and UBF1. Overall, protein pyrophosphorylation emerges as an archetype of non-canonical phosphorylation and should be considered in future phosphoproteomic analyses.

4.
BMC Biol ; 19(1): 261, 2021 12 11.
Article in English | MEDLINE | ID: mdl-34895221

ABSTRACT

BACKGROUND: Inositol pyrophosphates (PP-InsPs) are high-energy derivatives of inositol, involved in different signalling and regulatory responses of eukaryotic cells. Distinct PP-InsPs species are characterized by the presence of phosphate at a variable number of the 6-carbon inositol ring backbone, and two distinct classes of inositol phosphate kinases responsible for their synthesis have been identified in Arabidopsis, namely ITPKinase (inositol 1,3,4 trisphosphate 5/6 kinase) and PP-IP5Kinase (diphosphoinositol pentakisphosphate kinases). Plant PP-IP5Ks are capable of synthesizing InsP8 and were previously shown to control defense against pathogens and phosphate response signals. However, other potential roles of plant PP-IP5Ks, especially towards abiotic stress, remain poorly understood. RESULTS: Here, we characterized the physiological functions of two Triticum aestivum L. (hexaploid wheat) PPIP5K homologs, TaVIH1 and TaVIH2. We demonstrate that wheat VIH proteins can utilize InsP7 as the substrate to produce InsP8, a process that requires the functional VIH-kinase domains. At the transcriptional level, both TaVIH1 and TaVIH2 are expressed in different wheat tissues, including developing grains, but show selective response to abiotic stresses during drought-mimic experiments. Ectopic overexpression of TaVIH2-3B in Arabidopsis confers tolerance to drought stress and rescues the sensitivity of Atvih2 mutants. RNAseq analysis of TaVIH2-3B-expressing transgenic lines of Arabidopsis shows genome-wide reprogramming with remarkable effects on genes involved in cell-wall biosynthesis, which is supported by the observation of enhanced accumulation of polysaccharides (arabinogalactan, cellulose, and arabinoxylan) in the transgenic plants. CONCLUSIONS: Overall, this work identifies a novel function of VIH proteins, implicating them in modulation of the expression of cell-wall homeostasis genes, and tolerance to water-deficit stress. This work suggests that plant VIH enzymes may be linked to drought tolerance and opens up the possibility of future research into using plant VIH-derived products to generate drought-resistant plants.


Subject(s)
Arabidopsis , Arabidopsis/metabolism , Diphosphates/metabolism , Droughts , Gene Expression Regulation, Plant , Inositol Phosphates/metabolism , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Stress, Physiological , Triticum/genetics
5.
J Cell Sci ; 134(24)2021 12 15.
Article in English | MEDLINE | ID: mdl-34841428

ABSTRACT

Inositol hexakisphosphate kinase 1 (IP6K1) is a small molecule kinase that catalyzes the conversion of the inositol phosphate IP6 to 5-IP7. We show that IP6K1 acts independently of its catalytic activity to upregulate the formation of processing bodies (P-bodies), which are cytoplasmic ribonucleoprotein granules that store translationally repressed mRNA. IP6K1 does not localise to P-bodies, but instead binds to ribosomes, where it interacts with the mRNA decapping complex - the scaffold protein EDC4, activator proteins DCP1A/B, decapping enzyme DCP2 and RNA helicase DDX6. Along with its partner 4E-T, DDX6 is known to nucleate protein-protein interactions on the 5' mRNA cap to facilitate P-body formation. IP6K1 binds the translation initiation complex eIF4F on the mRNA cap, augmenting the interaction of DDX6 with 4E-T (also known as EIF4ENIF1) and the cap-binding protein eIF4E. Cells with reduced IP6K1 show downregulated microRNA-mediated translational suppression and increased stability of DCP2-regulated transcripts. Our findings unveil IP6K1 as a novel facilitator of proteome remodelling on the mRNA cap, tipping the balance in favour of translational repression over initiation, thus leading to P-body assembly. This article has an associated First Person interview with the first author of the paper.


Subject(s)
MicroRNAs , Processing Bodies , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Eukaryotic Initiation Factor-4E/genetics , Humans , Phosphotransferases (Phosphate Group Acceptor) , Proteins , Proto-Oncogene Proteins/metabolism , RNA, Messenger/genetics
6.
Molecules ; 26(12)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208421

ABSTRACT

IP6K and PPIP5K are two kinases involved in the synthesis of inositol pyrophosphates. Synthetic analogs or mimics are necessary to understand the substrate specificity of these enzymes and to find molecules that can alter inositol pyrophosphate synthesis. In this context, we synthesized four scyllo-inositol polyphosphates-scyllo-IP5, scyllo-IP6, scyllo-IP7 and Bz-scyllo-IP5-from myo-inositol and studied their activity as substrates for mouse IP6K1 and the catalytic domain of VIP1, the budding yeast variant of PPIP5K. We incubated these scyllo-inositol polyphosphates with these kinases and ATP as the phosphate donor. We tracked enzyme activity by measuring the amount of radiolabeled scyllo-inositol pyrophosphate product formed and the amount of ATP consumed. All scyllo-inositol polyphosphates are substrates for both the kinases but they are weaker than the corresponding myo-inositol phosphate. Our study reveals the importance of axial-hydroxyl/phosphate for IP6K1 substrate recognition. We found that all these derivatives enhance the ATPase activity of VIP1. We found very weak ligand-induced ATPase activity for IP6K1. Benzoyl-scyllo-IP5 was the most potent ligand to induce IP6K1 ATPase activity despite being a weak substrate. This compound could have potential as a competitive inhibitor.


Subject(s)
Adenosine Triphosphatases/metabolism , Inositol Phosphates/biosynthesis , Inositol/metabolism , Phosphotransferases (Phosphate Group Acceptor)/chemistry , Animals , Enzyme Assays/methods , Inositol/chemistry , Mice , Molecular Docking Simulation , Phosphorylation , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Signal Transduction , Substrate Specificity
7.
Biochem J ; 478(8): 1647-1661, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33821962

ABSTRACT

The transcription factor MYC regulates cell survival and growth, and its level is tightly controlled in normal cells. We report that serine pyrophosphorylation - a posttranslational modification triggered by inositol pyrophosphate signaling molecules - controls MYC levels via regulated protein degradation. We find that endogenous MYC is stabilized and less polyubiquitinated in cells with reduced inositol pyrophosphates. We show that the inositol pyrophosphate 5-IP7 transfers its high-energy beta phosphate moiety to pre-phosphorylated serine residues in the central PEST domain of MYC. Loss of serine pyrophosphorylation in the PEST domain lowers the extent of MYC polyubiquitination and increases its stability. Fusion to the MYC PEST domain lowers the stability of GFP, but this effect is dependent on the extent of PEST domain pyrophosphorylation. The E3 ubiquitin ligase FBW7 can bind directly to the PEST domain of MYC, and this interaction is exclusively dependent on serine pyrophosphorylation. A stabilized, pyrophosphorylation-deficient form of MYC increases cell death during growth stress in untransformed cells. Splenocytes from mice lacking IP6K1, a kinase responsible for the synthesis of 5-IP7, have higher levels of MYC, and show increased cell proliferation in response to mitogens, compared with splenocytes from wild type mice. Thus, control of MYC stability through a novel pyro-phosphodegron provides unexpected insight into the regulation of cell survival in response to environmental cues.


Subject(s)
F-Box-WD Repeat-Containing Protein 7/metabolism , Inositol Phosphates/metabolism , Phosphotransferases (Phosphate Group Acceptor)/genetics , Protein Processing, Post-Translational , Proto-Oncogene Proteins c-myc/metabolism , Amino Acid Sequence , Animals , Cell Line , Cell Survival , F-Box-WD Repeat-Containing Protein 7/genetics , Fibroblasts/cytology , Fibroblasts/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Phosphotransferases (Phosphate Group Acceptor)/deficiency , Proteolysis , Proto-Oncogene Proteins c-myc/genetics , Signal Transduction , Ubiquitination
8.
Methods Mol Biol ; 2091: 93-105, 2020.
Article in English | MEDLINE | ID: mdl-31773573

ABSTRACT

Protein pyrophosphorylation involves the transfer of a high-energy ß-phosphate from inositol pyrophosphates, such as diphosphoinositol pentakisphosphate (InsP7) to phosphorylated serine residues. Over a decade of research has established several proteins, involved in diverse physiological processes, as substrates of InsP7-mediated pyrophosphorylation. However, the need for detection of this posttranslational modification on endogenous proteins is paramount. "Back-pyrophosphorylation" is a simple technique to test whether a native protein undergoes InsP7-mediated pyrophosphorylation inside cells. The basis of this technique relies on the fact that a target protein isolated from cells with lower InsP7 levels exists in a hypo-pyrophosphorylated form as compared to the same protein isolated from cells with normal InsP7 levels. Hence, when radiolabeled InsP7 is added to a target protein immunoprecipitated from both these cell types, the hypopyrophosphorylated protein accepts a higher amount of radiolabeled phosphate when compared to the protein isolated from wild-type cells. This chapter provides detailed methods to identify an InsP7 target protein and conduct a back-pyrophosphorylation assay on a target protein immunoprecipitated from cells with normal versus reduced InsP7 levels, to confirm its endogenous pyrophosphorylation status.


Subject(s)
Inositol Phosphates/metabolism , Phosphoproteins/analysis , HEK293 Cells , Humans , Immunoprecipitation , Phosphorylation , Serine/chemistry
9.
Adv Biol Regul ; 75: 100662, 2020 01.
Article in English | MEDLINE | ID: mdl-31668836

ABSTRACT

Inositol pyrophosphates (PP-IPs) are a class of energy rich metabolites present in all eukaryotic cells. The hydroxyl groups on these water soluble derivatives of inositol are substituted with diphosphate and monophosphate moieties. Since the discovery of PP-IPs in the early 1990s, enormous progress has been made in uncovering pleiotropic roles for these small molecules in cellular physiology. PP-IPs exert their effect on proteins in two ways - allosteric regulation by direct binding, or post-translational regulation by serine pyrophosphorylation, a modification unique to PP-IPs. Serine pyrophosphorylation is achieved by Mg2+-dependent, but enzyme independent transfer of a ß-phosphate from a PP-IP to a pre-phosphorylated serine residue located in an acidic motif, within an intrinsically disordered protein sequence. This distinctive post-translational modification has been shown to regulate diverse cellular processes, including rRNA synthesis, glycolysis, and vesicle transport. However, our understanding of the molecular details of this phosphotransfer from pyrophospho-inositol to generate pyrophospho-serine, is still nascent. This review discusses our current knowledge of protein pyrophosphorylation, and recent advances in understanding the mechanism of this important yet overlooked post-translational modification.


Subject(s)
Diphosphates/metabolism , Energy Metabolism , Eukaryotic Cells/metabolism , Inositol Phosphates/metabolism , Protein Processing, Post-Translational , Serine/metabolism , Signal Transduction , Biological Transport , Phosphorylation
10.
J Mol Biol ; 431(11): 2127-2142, 2019 05 17.
Article in English | MEDLINE | ID: mdl-30974121

ABSTRACT

Cyclin-dependent kinase 1 (CDK1) is essential for cell-cycle progression. While dependence of CDK activity on cyclin levels is well established, molecular mechanisms that regulate their binding are less understood. Here, we report for the first time that CDK1:cyclin-B binding is not default but rather determined by the evolutionarily conserved catalytic residue, lysine-33 in CDK1. We demonstrate that the charge state of this lysine allosterically remodels the CDK1:cyclin-B interface. Cell cycle-dependent acetylation of lysine-33 or its mutation to glutamine, which mimics acetylation, abrogates cyclin-B binding. Using biochemical approaches and atomistic molecular dynamics simulations, we have uncovered both short-range and long-range effects of perturbing the charged state of the catalytic lysine, which lead to inhibition of kinase activity. Specifically, although loss of the charge state of catalytic lysine did not impact ATP binding significantly, it altered its orientation in the active site. In addition, the catalytic lysine also acts as an intra-molecular electrostatic tether at the active site to orient structural elements interfacing with cyclin-B. Physiologically, opposing activities of SIRT1 and P300 regulate acetylation and thus control the charge state of lysine-33. Importantly, cells expressing acetylation mimic mutant of Cdc2/CDK1 in yeast are arrested in G2 and fail to divide, indicating the requirement of the deacetylated state of the catalytic lysine for cell division. Thus, by illustrating the molecular role of the catalytic lysine and cell cycle-dependent deacetylation as a determinant of CDK1:cyclin-B interaction, our results redefine the current model of CDK1 activation and cell-cycle progression.


Subject(s)
CDC2 Protein Kinase/metabolism , Cyclin B/metabolism , Acetylation , Allosteric Regulation , CDC2 Protein Kinase/chemistry , Catalytic Domain , Cell Cycle , HEK293 Cells , HeLa Cells , Humans , Models, Molecular
11.
Angew Chem Int Ed Engl ; 58(12): 3928-3933, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30681761

ABSTRACT

An iterative polyphosphorylation approach is described, which is based on a phosphoramidite (P-amidite) derived reagent (c-PyPA) obtained from the cyclization of pyrophosphate with a reactive diisopropylaminodichlorophosphine. This type of reagent is unprecedented as it represents a reactive P-amidite without protecting groups. The reagent proved to be stable in solution over several weeks. Its utility is described in the context of iterative monodirectional and bidirectional polyphosphorylations. The ensuing functionalized cyclotriphosphate can be opened with a variety of nucleophiles providing ready access to diverse functionalized polyphosphate chains of defined length with several tags, including both P-N and P-O labels. Their interaction with exo- and endopolyphosphatases is described.

12.
Faraday Discuss ; 207(0): 91-113, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29362761

ABSTRACT

Protein Charge Transfer Spectra (ProCharTS) originate when charged amino/carboxylate groups in the side chains of Lys/Glu act as electronic charge acceptors/donors for photoinduced charge transfer either from/to the polypeptide backbone or to each other. The absorption band intensities in ProCharTS at wavelengths of 250-800 nm are dependent on the 3D spatial proximity of these charged functional groups across the protein. Intrinsically disordered proteins (IDPs) are an important class of proteins involved in signalling and regulatory functions in the eukaryotic cell. IDPs are rich in charged amino acids, but lack structure-promoting intrinsic spectral probes like Tyr or Trp in their sequences, making their structural characterisation difficult. Here, we exploit the richness of charged amino acid populations among IDPs (like the PEST fragment of human c-Myc, its mutant and dehydrin from maize) to sense structural transitions in IDPs using ProCharTS absorption spectra. Conformational changes induced in the protein by altering the pH and temperature of the aqueous medium were monitored by ProCharTS and confirmed by CD spectra. Further, the utility of ProCharTS to detect protein aggregation was examined using Hen Egg-White Lysozyme (HEWL) protein. The results revealed that in the presence of Trp/Tyr, ProCharTS absorbance was substantially reduced, specifically at wavelengths where the absorption by Trp or Tyr was near its maximum. Significant changes in the ProCharTS spectra were observed with changing pH in the range of 3-11, which correlated with changes in the secondary structure of the PEST fragment. Importantly, the absorbance at 280 nm, which is often employed as a measure of protein concentration, was profoundly altered by changes in ProCharTS intensity in response to changing the pH in dehydrin. The ProCharTS intensity was sensitive to temperature-induced changes in the secondary structures of the PEST fragments between 25-85 °C. The presence of 0.25 M NaCl or KCl in the medium also altered the ProCharTS spectrum. Finally, an increase in ProCharTS absorbance with time in HEWL at pH 2 directly correlated with the growth of HEWL aggregates and amyloid fibrils, as confirmed by the increasing thioflavin T fluorescence. Taken together, our work highlights the utility of ProCharTS as a label-free intrinsic probe to monitor changes in protein charge, structure and oligomeric state.


Subject(s)
DNA-Binding Proteins/chemistry , Intrinsically Disordered Proteins/chemistry , Muramidase/chemistry , Plant Proteins/chemistry , Transcription Factors/chemistry , Animals , Chickens , Humans , Hydrogen-Ion Concentration , Spectrophotometry, Ultraviolet , Temperature
13.
J Cell Sci ; 130(17): 2854-2866, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28743739

ABSTRACT

Inositol hexakisphosphate kinases (IP6Ks) are enzymes that synthesise the inositol pyrophosphate 5-diphosphoinositol pentakisphosphate (5-IP7), which is known to regulate several physiological processes. Deletion of IP6K1, but not other IP6K isoforms, causes sterility in male mice. Here, we present a detailed investigation of the specific function of IP6K1 in spermatogenesis. Within the mouse testis, IP6K1 is expressed at high levels in late stage pachytene spermatocytes and in round spermatids. We found IP6K1 to be a novel component of the chromatoid body, a cytoplasmic granule found in round spermatids that is composed of RNA and RNA-binding proteins, and noted that this structure is absent in Ip6k1-/- round spermatids. Furthermore, juvenile spermatids from Ip6k1-/- mice display premature expression of the transition protein TNP2 and the protamine PRM2 due to translational derepression. The aberrant localisation of these key sperm-specific chromatin components, together with the persistence of somatic histones, results in abnormal spermatid elongation, failure to complete spermatid differentiation and azoospermia in these mice. Our study thus identifies IP6K1 as an indispensable factor in the temporal regulation of male germ cell differentiation.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Nuclear Proteins/metabolism , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Protamines/metabolism , Spermatids/metabolism , Animals , Apoptosis , Azoospermia/metabolism , Azoospermia/pathology , DNA/metabolism , DNA-Binding Proteins , Female , Gene Deletion , Histones/metabolism , Male , Mice, Inbred C57BL , Models, Biological , Phosphotransferases (Phosphate Group Acceptor)/deficiency , Protein Biosynthesis , Spermatids/pathology , Spermatids/ultrastructure , Spermatogenesis/genetics , Testis/metabolism , Time Factors
14.
J Indian Inst Sci ; 97(1): 23-40, 2017.
Article in English | MEDLINE | ID: mdl-32214696

ABSTRACT

Inositol pyrophosphates (PP-IPs) are a class of energy-rich signalling molecules found in all eukaryotic cells. These are derivatives of inositol that contain one or more diphosphate (or pyrophosphate) groups in addition to monophosphates. The more abundant and best studied PP-IPs are diphosphoinositol pentakisphosphate (IP7) and bis-diphosphoinositol tetrakisphosphate (IP8). These molecules can influence protein function by two mechanisms: binding and pyrophosphorylation. The former involves the specific interaction of a particular inositol pyrophosphate with a binding site on a protein, while the latter is a unique attribute of inositol pyrophosphates, wherein the ß-phosphate moiety is transferred from a PP-IP to a pre-phosphorylated serine residue in a protein to generate pyrophosphoserine. Both these events can result in changes in the target protein's activity, localisation or its interaction with other partners. As a consequence of their ubiquitous presence in all eukaryotic organisms and all cell types examined till date, and their ability to modify protein function, PP-IPs have been found to participate in a wide range of metabolic, developmental, and signalling pathways. This review highlights many of the known functions of PP-IPs in the context of their temporal and spatial distribution in eukaryotic cells.

15.
Biochem J ; 473(19): 3031-47, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27474409

ABSTRACT

Inositol pyrophosphates, such as diphosphoinositol pentakisphosphate (IP7), are conserved eukaryotic signaling molecules that possess pyrophosphate and monophosphate moieties. Generated predominantly by inositol hexakisphosphate kinases (IP6Ks), inositol pyrophosphates can modulate protein function by posttranslational serine pyrophosphorylation. Here, we report inositol pyrophosphates as novel regulators of cytoplasmic dynein-driven vesicle transport. Mammalian cells lacking IP6K1 display defects in dynein-dependent trafficking pathways, including endosomal sorting, vesicle movement, and Golgi maintenance. Expression of catalytically active but not inactive IP6K1 reverses these defects, suggesting a role for inositol pyrophosphates in these processes. Endosomes derived from slime mold lacking inositol pyrophosphates also display reduced dynein-directed microtubule transport. We demonstrate that Ser51 in the dynein intermediate chain (IC) is a target for pyrophosphorylation by IP7, and this modification promotes the interaction of the IC N-terminus with the p150(Glued) subunit of dynactin. IC-p150(Glued) interaction is decreased, and IC recruitment to membranes is reduced in cells lacking IP6K1. Our study provides the first evidence for the involvement of IP6Ks in dynein function and proposes that inositol pyrophosphate-mediated pyrophosphorylation may act as a regulatory signal to enhance dynein-driven transport.


Subject(s)
Cytoplasm/metabolism , Dyneins/metabolism , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Animals , Endosomes/enzymology , Female , Golgi Apparatus/enzymology , Humans , Inositol Phosphates/metabolism , Mice , Phosphorylation , Protein Transport
16.
Cell Signal ; 28(8): 1124-36, 2016 08.
Article in English | MEDLINE | ID: mdl-27140681

ABSTRACT

Inositol hexakisphosphate kinases (IP6Ks), a family of enzymes found in all eukaryotes, are responsible for the synthesis of 5-diphosphoinositol pentakisphosphate (5-IP7) from inositol hexakisphosphate (IP6). Three isoforms of IP6Ks are found in mammals, and gene deletions of each isoform lead to diverse, non-overlapping phenotypes in mice. Previous studies show a facilitatory role for IP6K2 in cell migration and invasion, properties that are essential for the early stages of tumorigenesis. However, IP6K2 also has an essential role in cancer cell apoptosis, and mice lacking this protein are more susceptible to the development of aerodigestive tract carcinoma upon treatment with the oral carcinogen 4-nitroquinoline-1-oxide (4NQO). Not much is known about the functions of the equally abundant and ubiquitously expressed IP6K1 isoform in cell migration, invasion and cancer progression. We conducted a gene expression analysis on mouse embryonic fibroblasts (MEFs) lacking IP6K1, revealing a role for this protein in cell receptor-extracellular matrix interactions that regulate actin cytoskeleton dynamics. Consequently, cells lacking IP6K1 manifest defects in adhesion-dependent signaling, evident by lower FAK and Paxillin activation, leading to reduced cell spreading and migration. Expression of active, but not inactive IP6K1 reverses migration defects in IP6K1 knockout MEFs, suggesting that 5-IP7 synthesis by IP6K1 promotes cell locomotion. Actin cytoskeleton remodeling and cell migration support the ability of cancer cells to achieve their complete oncogenic potential. Cancer cells with lower IP6K1 levels display reduced migration, invasion, and anchorage-independent growth. When fed an oral carcinogen, mice lacking IP6K1 show reduced progression from epithelial dysplasia to invasive carcinoma. Thus, our data reveal that like IP6K2, IP6K1 is also involved in early cytoskeleton remodeling events during cancer progression. However, unlike IP6K2, IP6K1 is essential for 4NQO-induced invasive carcinoma. Our study therefore uncovers similarities and differences in the roles of IP6K1 and IP6K2 in cancer progression, and we propose that an isoform-specific IP6K1 inhibitor may provide a novel route to suppress carcinogenesis.


Subject(s)
Cell Movement , Gene Deletion , Head and Neck Neoplasms/enzymology , Head and Neck Neoplasms/pathology , Phosphotransferases (Phosphate Group Acceptor)/metabolism , 4-Nitroquinoline-1-oxide , Animals , Cell Adhesion , Cell Movement/genetics , Extracellular Space/metabolism , Fibroblasts/metabolism , Fibronectins/metabolism , Gene Expression Regulation, Neoplastic , Gene Knockout Techniques , HCT116 Cells , HEK293 Cells , HeLa Cells , Head and Neck Neoplasms/genetics , Humans , Inositol Phosphates/pharmacology , Mice, Knockout , Neoplasm Invasiveness , Phosphotransferases (Phosphate Group Acceptor)/genetics , Quinolones , RNA, Small Interfering/metabolism , Signal Transduction
17.
J Biosci ; 40(3): 593-605, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26333405

ABSTRACT

Inositol pyrophosphates are water soluble derivatives of inositol that contain pyrophosphate or diphosphate moieties in addition to monophosphates. The best characterised inositol pyrophosphates, are IP7 (diphosphoinositol pentakisphosphate or PP-IP5), and IP8 (bisdiphosphoinositol tetrakisphosphate or (PP)2-IP4). These energy-rich small molecules are present in all eukaryotic cells, from yeast to mammals, and are involved in a wide range of cellular functions including apoptosis, vesicle trafficking, DNA repair, osmoregulation, phosphate homeostasis, insulin sensitivity, immune signalling, cell cycle regulation, and ribosome synthesis. Identified more than 20 years ago, there is still only a rudimentary understanding of the mechanisms by which inositol pyrophosphates participate in these myriad pathways governing cell physiology and homeostasis. The unique stereochemical and bioenergetic properties these molecules possess as a consequence of the presence of one or two pyrophosphate moieties in the vicinity of densely packed monophosphates are likely to form the molecular basis for their participation in multiple signalling and metabolic pathways. The aim of this review is to provide first time researchers in this area with an introduction to inositol pyrophosphates and a comprehensive overview on their cellular functions.


Subject(s)
Eukaryotic Cells/metabolism , Inositol Phosphates/chemistry , Inositol Phosphates/metabolism , Animals , Apoptosis/physiology , Biological Transport/physiology , DNA Repair/physiology , Energy Metabolism/physiology , Signal Transduction/physiology
18.
Biochem J ; 466(1): 105-14, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25423617

ABSTRACT

Ribosome biogenesis is an essential cellular process regulated by the metabolic state of a cell. We examined whether inositol pyrophosphates, energy-rich derivatives of inositol that act as metabolic messengers, play a role in ribosome synthesis in the budding yeast, Saccharomyces cerevisiae. Yeast strains lacking the inositol hexakisphosphate (IP6) kinase Kcs1, which is required for the synthesis of inositol pyrophosphates, display increased sensitivity to translation inhibitors and decreased protein synthesis. These phenotypes are reversed on expression of enzymatically active Kcs1, but not on expression of the inactive form. The kcs1Δ yeast cells exhibit reduced levels of ribosome subunits, suggesting that they are defective in ribosome biogenesis. The rate of rRNA synthesis, the first step of ribosome biogenesis, is decreased in kcs1Δ yeast strains, suggesting that RNA polymerase I (Pol I) activity may be reduced in these cells. We determined that the Pol I subunits, A190, A43 and A34.5, can accept a ß-phosphate moiety from inositol pyrophosphates to undergo serine pyrophosphorylation. Although there is impaired rRNA synthesis in kcs1Δ yeast cells, we did not find any defect in recruitment of Pol I on rDNA, but observed that the rate of transcription elongation was compromised. Taken together, our findings highlight inositol pyrophosphates as novel regulators of rRNA transcription.


Subject(s)
Gene Expression Regulation, Fungal , Inositol Phosphates/metabolism , Phosphotransferases (Phosphate Group Acceptor)/genetics , Protein Subunits/genetics , RNA Polymerase I/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Genetic Complementation Test , Hygromycin B/pharmacology , Inositol Phosphates/pharmacology , Paromomycin/pharmacology , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Protein Biosynthesis/drug effects , Protein Subunits/metabolism , Protein Synthesis Inhibitors/pharmacology , RNA Polymerase I/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction , Transcription, Genetic/drug effects
19.
Blood ; 122(8): 1478-86, 2013 Aug 22.
Article in English | MEDLINE | ID: mdl-23782934

ABSTRACT

Polyphosphate (polyP), a polymer of orthophosphate moieties released from the dense granules of activated platelets, is a procoagulant agent. Inositol pyrophosphates, another group of phosphate-rich molecules, consist of mono- and diphosphates substituted on an inositol ring. Diphosphoinositol pentakisphosphate (IP7), the most abundant inositol pyrophosphate, is synthesized on phosphorylation of inositol hexakisphosphate (IP6) by IP6 kinases, of which there are 3 mammalian isoforms (IP6K1/2/3) and a single yeast isoform. Yeast lacking IP6 kinase are devoid of polyP, suggesting a role for IP6 kinase in maintaining polyP levels. We theorized that the molecular link between IP6 kinase and polyP is conserved in mammals and investigated whether polyP-dependent platelet function is altered in IP6K1 knockout (Ip6k1(-/-)) mice. We observe a significant reduction in platelet polyP levels in Ip6k1(-/-) mice, along with slower platelet aggregation and lengthened plasma clotting time. Incorporation of polyP into fibrin clots was reduced in Ip6k1(-/-) mice, thereby altering clot ultrastructure, which was rescued on the addition of exogenous polyP. In vivo assays revealed longer tail bleeding time and resistance to thromboembolism in Ip6k1(-/-) mice. Taken together, our data suggest a novel role for IP6K1 in regulation of mammalian hemostasis via its control of platelet polyP levels.


Subject(s)
Blood Platelets/metabolism , Phosphotransferases (Phosphate Group Acceptor)/physiology , Polyphosphates/metabolism , Animals , Bleeding Time , Blood Coagulation , Hemostasis , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , P-Selectin/metabolism , Phytic Acid/metabolism , Pulmonary Embolism/metabolism , Thrombin/metabolism , Thromboembolism/blood
20.
J Biol Chem ; 288(5): 3312-21, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23255604

ABSTRACT

Inositol pyrophosphates, such as diphosphoinositol pentakisphosphate (IP(7)), are water-soluble inositol phosphates that contain high energy diphosphate moieties on the inositol ring. Inositol hexakisphosphate kinase 1 (IP6K1) participates in inositol pyrophosphate synthesis, converting inositol hexakisphosphate (IP(6)) to IP(7). In the present study, we show that mouse embryonic fibroblasts (MEFs) lacking IP6K1 exhibit impaired DNA damage repair via homologous recombination (HR). IP6K1 knock-out MEFs show decreased viability and reduced recovery after induction of DNA damage by the replication stress inducer, hydroxyurea, or the radiomimetic antibiotic, neocarzinostatin. Cells lacking IP6K1 arrest after genotoxic stress, and markers associated with DNA repair are recruited to DNA damage sites, indicating that HR repair is initiated in these cells. However, repair does not proceed to completion because these markers persist as nuclear foci long after drug removal. A fraction of IP6K1-deficient MEFs continues to proliferate despite the persistence of DNA damage, rendering the cells more susceptible to chromosomal aberrations. Expression of catalytically active but not inactive IP6K1 can restore the repair process in knock-out MEFs, implying that inositol pyrophosphates are required for HR-mediated repair. Our study therefore highlights inositol pyrophosphates as novel small molecule regulators of HR signaling in mammals.


Subject(s)
Inositol Phosphates/biosynthesis , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Recombinational DNA Repair , Animals , Biomarkers/metabolism , Cell Cycle , Cell Survival , Chromosome Aberrations , DNA Breaks, Double-Stranded , Mice , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL