Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Plant ; 15(9): 1457-1469, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35915586

ABSTRACT

Species of the genus Phytophthora, the plant killer, cause disease and reduce yields in many crop plants. Although many Resistance to Phytophthora infestans (Rpi) genes effective against potato late blight have been cloned, few have been cloned against other Phytophthora species. Most Rpi genes encode nucleotide-binding domain, leucine-rich repeat-containing (NLR) immune receptor proteins that recognize RXLR (Arg-X-Leu-Arg) effectors. However, whether NLR proteins can recognize RXLR effectors from multiple Phytophthora species has rarely been investigated. Here, we identified a new RXLR-WY effector AVRamr3 from P. infestans that is recognized by Rpi-amr3 from a wild Solanaceae species Solanum americanum. Rpi-amr3 associates with AVRamr3 in planta. AVRamr3 is broadly conserved in many different Phytophthora species, and the recognition of AVRamr3 homologs by Rpi-amr3 activates resistance against multiple Phytophthora pathogens, including the tobacco black shank disease and cacao black pod disease pathogens P. parasitica and P. palmivora. Rpi-amr3 is thus the first characterized resistance gene that acts against P. parasitica or P. palmivora. These findings suggest a novel path to redeploy known R genes against different important plant pathogens.


Subject(s)
Phytophthora infestans , Solanum tuberosum , Solanum , Disease Resistance/genetics , Genes, Plant , Phytophthora infestans/metabolism , Plant Diseases/genetics , Solanum/genetics , Solanum tuberosum/genetics
2.
Nat Plants ; 7(2): 198-208, 2021 02.
Article in English | MEDLINE | ID: mdl-33574576

ABSTRACT

Late blight caused by Phytophthora infestans greatly constrains potato production. Many Resistance (R) genes were cloned from wild Solanum species and/or introduced into potato cultivars by breeding. However, individual R genes have been overcome by P. infestans evolution; durable resistance remains elusive. We positionally cloned a new R gene, Rpi-amr1, from Solanum americanum, that encodes an NRC helper-dependent CC-NLR protein. Rpi-amr1 confers resistance in potato to all 19 P. infestans isolates tested. Using association genomics and long-read RenSeq, we defined eight additional Rpi-amr1 alleles from different S. americanum and related species. Despite only ~90% identity between Rpi-amr1 proteins, all confer late blight resistance but differentially recognize Avramr1 orthologues and paralogues. We propose that Rpi-amr1 gene family diversity assists detection of diverse paralogues and alleles of the recognized effector, facilitating durable resistance against P. infestans.


Subject(s)
Chromosome Mapping , Cloning, Molecular/methods , Disease Resistance/genetics , Phytophthora infestans/pathogenicity , Plant Diseases/genetics , Plant Immunity/genetics , Solanum/genetics , Gene Expression Regulation, Plant , Genes, Plant , Genomics , Plant Breeding/methods
SELECTION OF CITATIONS
SEARCH DETAIL