Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 16(10): 5257-5266, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38363168

ABSTRACT

Non-aqueous Li-air batteries have garnered significant interest in recent years. The key challenge lies in the development of efficient catalysts to overcome the sluggish kinetics associated with the oxygen reduction reaction (ORR) during discharge and the oxygen evolution reaction (OER) during charging at the cathode. In this work, we conducted a comprehensive study on B/N-doped and BN co-doped fullerenes using first-principles analysis. Our results show significant changes in the geometries, electronic properties, and catalytic behaviors of doped and co-doped fullerenes. The coexistence of boron and nitrogen boosts the formation energy, enhancing stability compared to pristine and single-doped structures. C179B exhibits minimal overpotentials (0.98 V), implying superior catalyst performance for ORR and OER in LABs and significantly better performance than Pt (111) (3.48 V) and standard graphene (3.51 V). The electron-deficient nature of the B atom makes it provide its vacant 2pz orbital for conjugation with the p-electrons of nearby carbon atoms. Consequently, boron serves as a highly active site due to the localization of positive charge, which improves the adsorption of intermediates through oxygen atoms. Moreover, the higher activity of B-doped systems than N-doped systems in lithium-rich environments is opposite to the observed trend in the reported PEM fuel cells. This work introduces doped and co-doped fullerenes as LAB catalysts, offering insights into their tunable ORR/OER activity via doping with various heteroatoms and fullerene size modulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...