Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
J Cardiovasc Magn Reson ; 26(1): 101040, 2024.
Article in English | MEDLINE | ID: mdl-38522522

ABSTRACT

BACKGROUND: Late gadolinium enhancement (LGE) of the myocardium has significant diagnostic and prognostic implications, with even small areas of enhancement being important. Distinguishing between definitely normal and definitely abnormal LGE images is usually straightforward, but diagnostic uncertainty arises when reporters are not sure whether the observed LGE is genuine or not. This uncertainty might be resolved by repetition (to remove artifact) or further acquisition of intersecting images, but this must take place before the scan finishes. Real-time quality assurance by humans is a complex task requiring training and experience, so being able to identify which images have an intermediate likelihood of LGE while the scan is ongoing, without the presence of an expert is of high value. This decision-support could prompt immediate image optimization or acquisition of supplementary images to confirm or refute the presence of genuine LGE. This could reduce ambiguity in reports. METHODS: Short-axis, phase-sensitive inversion recovery late gadolinium images were extracted from our clinical cardiac magnetic resonance (CMR) database and shuffled. Two, independent, blinded experts scored each individual slice for "LGE likelihood" on a visual analog scale, from 0 (absolute certainty of no LGE) to 100 (absolute certainty of LGE), with 50 representing clinical equipoise. The scored images were split into two classes-either "high certainty" of whether LGE was present or not, or "low certainty." The dataset was split into training, validation, and test sets (70:15:15). A deep learning binary classifier based on the EfficientNetV2 convolutional neural network architecture was trained to distinguish between these categories. Classifier performance on the test set was evaluated by calculating the accuracy, precision, recall, F1-score, and area under the receiver operating characteristics curve (ROC AUC). Performance was also evaluated on an external test set of images from a different center. RESULTS: One thousand six hundred and forty-five images (from 272 patients) were labeled and split at the patient level into training (1151 images), validation (247 images), and test (247 images) sets for the deep learning binary classifier. Of these, 1208 images were "high certainty" (255 for LGE, 953 for no LGE), and 437 were "low certainty". An external test comprising 247 images from 41 patients from another center was also employed. After 100 epochs, the performance on the internal test set was accuracy = 0.94, recall = 0.80, precision = 0.97, F1-score = 0.87, and ROC AUC = 0.94. The classifier also performed robustly on the external test set (accuracy = 0.91, recall = 0.73, precision = 0.93, F1-score = 0.82, and ROC AUC = 0.91). These results were benchmarked against a reference inter-expert accuracy of 0.86. CONCLUSION: Deep learning shows potential to automate quality control of late gadolinium imaging in CMR. The ability to identify short-axis images with intermediate LGE likelihood in real-time may serve as a useful decision-support tool. This approach has the potential to guide immediate further imaging while the patient is still in the scanner, thereby reducing the frequency of recalls and inconclusive reports due to diagnostic indecision.


Subject(s)
Contrast Media , Deep Learning , Image Interpretation, Computer-Assisted , Predictive Value of Tests , Humans , Contrast Media/administration & dosage , Reproducibility of Results , Image Interpretation, Computer-Assisted/standards , Databases, Factual , Myocardium/pathology , Male , Female , Magnetic Resonance Imaging, Cine/standards , Middle Aged , Heart Diseases/diagnostic imaging , Quality Assurance, Health Care/standards , Observer Variation , Aged , Magnetic Resonance Imaging/standards
2.
J Cardiovasc Magn Reson ; 26(1): 100005, 2024.
Article in English | MEDLINE | ID: mdl-38211656

ABSTRACT

BACKGROUND: Cardiovascular magnetic resonance (CMR) imaging is an important tool for evaluating the severity of aortic stenosis (AS), co-existing aortic disease, and concurrent myocardial abnormalities. Acquiring this additional information requires protocol adaptations and additional scanner time, but is not necessary for the majority of patients who do not have AS. We observed that the relative signal intensity of blood in the ascending aorta on a balanced steady state free precession (bSSFP) 3-chamber cine was often reduced in those with significant aortic stenosis. We investigated whether this effect could be quantified and used to predict AS severity in comparison to existing gold-standard measurements. METHODS: Multi-centre, multi-vendor retrospective analysis of patients with AS undergoing CMR and transthoracic echocardiography (TTE). Blood signal intensity was measured in a ∼1 cm2 region of interest (ROI) in the aorta and left ventricle (LV) in the 3-chamber bSSFP cine. Because signal intensity varied across patients and scanner vendors, a ratio of the mean signal intensity in the aorta ROI to the LV ROI (Ao:LV) was used. This ratio was compared using Pearson correlations against TTE parameters of AS severity: aortic valve peak velocity, mean pressure gradient and the dimensionless index. The study also assessed whether field strength (1.5 T vs. 3 T) and patient characteristics (presence of bicuspid aortic valves (BAV), dilated aortic root and low flow states) altered this signal relationship. RESULTS: 314 patients (median age 69 [IQR 57-77], 64% male) who had undergone both CMR and TTE were studied; 84 had severe AS, 78 had moderate AS, 66 had mild AS and 86 without AS were studied as a comparator group. The median time between CMR and TTE was 12 weeks (IQR 4-26). The Ao:LV ratio at 1.5 T strongly correlated with peak velocity (r = -0.796, p = 0.001), peak gradient (r = -0.772, p = 0.001) and dimensionless index (r = 0.743, p = 0.001). An Ao:LV ratio of < 0.86 was 84% sensitive and 82% specific for detecting AS of any severity and a ratio of 0.58 was 83% sensitive and 92% specific for severe AS. The ability of Ao:LV ratio to predict AS severity remained for patients with bicuspid aortic valves, dilated aortic root or low indexed stroke volume. The relationship between Ao:LV ratio and AS severity was weaker at 3 T. CONCLUSIONS: The Ao:LV ratio, derived from bSSFP 3-chamber cine images, shows a good correlation with existing measures of AS severity. It demonstrates utility at 1.5 T and offers an easily calculable metric that can be used at the time of scanning or automated to identify on an adaptive basis which patients benefit from dedicated imaging to assess which patients should have additional sequences to assess AS.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Magnetic Resonance Imaging, Cine , Predictive Value of Tests , Severity of Illness Index , Ventricular Function, Left , Humans , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/physiopathology , Female , Male , Retrospective Studies , Aged , Middle Aged , Aortic Valve/diagnostic imaging , Aortic Valve/physiopathology , Aortic Valve/pathology , Aortic Valve/abnormalities , Reproducibility of Results , Aorta/diagnostic imaging , Aorta/physiopathology , Image Interpretation, Computer-Assisted , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Regional Blood Flow , United States
3.
J Med Artif Intell ; 6: 4, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37346802

ABSTRACT

Background: Getting the most value from expert clinicians' limited labelling time is a major challenge for artificial intelligence (AI) development in clinical imaging. We present a novel method for ground-truth labelling of cardiac magnetic resonance imaging (CMR) image data by leveraging multiple clinician experts ranking multiple images on a single ordinal axis, rather than manual labelling of one image at a time. We apply this strategy to train a deep learning (DL) model to classify the anatomical position of CMR images. This allows the automated removal of slices that do not contain the left ventricular (LV) myocardium. Methods: Anonymised LV short-axis slices from 300 random scans (3,552 individual images) were extracted. Each image's anatomical position relative to the LV was labelled using two different strategies performed for 5 hours each: (I) 'one-image-at-a-time': each image labelled according to its position: 'too basal', 'LV', or 'too apical' individually by one of three experts; and (II) 'multiple-image-ranking': three independent experts ordered slices according to their relative position from 'most-basal' to 'most apical' in batches of eight until each image had been viewed at least 3 times. Two convolutional neural networks were trained for a three-way classification task (each model using data from one labelling strategy). The models' performance was evaluated by accuracy, F1-score, and area under the receiver operating characteristics curve (ROC AUC). Results: After excluding images with artefact, 3,323 images were labelled by both strategies. The model trained using labels from the 'multiple-image-ranking strategy' performed better than the model using the 'one-image-at-a-time' labelling strategy (accuracy 86% vs. 72%, P=0.02; F1-score 0.86 vs. 0.75; ROC AUC 0.95 vs. 0.86). For expert clinicians performing this task manually the intra-observer variability was low (Cohen's κ=0.90), but the inter-observer variability was higher (Cohen's κ=0.77). Conclusions: We present proof of concept that, given the same clinician labelling effort, comparing multiple images side-by-side using a 'multiple-image-ranking' strategy achieves ground truth labels for DL more accurately than by classifying images individually. We demonstrate a potential clinical application: the automatic removal of unrequired CMR images. This leads to increased efficiency by focussing human and machine attention on images which are needed to answer clinical questions.

4.
Comput Biol Med ; 152: 106422, 2023 01.
Article in English | MEDLINE | ID: mdl-36535210

ABSTRACT

Recently, deep networks have shown impressive performance for the segmentation of cardiac Magnetic Resonance Imaging (MRI) images. However, their achievement is proving slow to transition to widespread use in medical clinics because of robustness issues leading to low trust of clinicians to their results. Predicting run-time quality of segmentation masks can be useful to warn clinicians against poor results. Despite its importance, there are few studies on this problem. To address this gap, we propose a quality control method based on the agreement across decoders of a multi-view network, TMS-Net, measured by the cosine similarity. The network takes three view inputs resliced from the same 3D image along different axes. Different from previous multi-view networks, TMS-Net has a single encoder and three decoders, leading to better noise robustness, segmentation performance and run-time quality estimation in our experiments on the segmentation of the left atrium on STACOM 2013 and STACOM 2018 challenge datasets. We also present a way to generate poor segmentation masks by using noisy images generated with engineered noise and Rician noise to simulate undertraining, high anisotropy and poor imaging settings problems. Our run-time quality estimation method show a good classification of poor and good quality segmentation masks with an AUC reaching to 0.97 on STACOM 2018. We believe that TMS-Net and our run-time quality estimation method has a high potential to increase the thrust of clinicians to automatic image analysis tools.


Subject(s)
Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Heart Atria , Anisotropy
5.
Clin Infect Dis ; 76(4): 658-666, 2023 02 18.
Article in English | MEDLINE | ID: mdl-35913410

ABSTRACT

BACKGROUND: We explore severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody lateral flow immunoassay (LFIA) performance under field conditions compared to laboratory-based electrochemiluminescence immunoassay (ECLIA) and live virus neutralization. METHODS: In July 2021, 3758 participants performed, at home, a self-administered Fortress LFIA on finger-prick blood, reported and submitted a photograph of the result, and provided a self-collected capillary blood sample for assessment of immunoglobulin G (IgG) antibodies using the Roche Elecsys® Anti-SARS-CoV-2 ECLIA. We compared the self-reported LFIA result to the quantitative ECLIA and checked the reading of the LFIA result with an automated image analysis (ALFA). In a subsample of 250 participants, we compared the results to live virus neutralization. RESULTS: Almost all participants (3593/3758, 95.6%) had been vaccinated or reported prior infection. Overall, 2777/3758 (73.9%) were positive on self-reported LFIA, 2811/3457 (81.3%) positive by LFIA when ALFA-reported, and 3622/3758 (96.4%) positive on ECLIA (using the manufacturer reference standard threshold for positivity of 0.8 U mL-1). Live virus neutralization was detected in 169 of 250 randomly selected samples (67.6%); 133/169 were positive with self-reported LFIA (sensitivity 78.7%; 95% confidence interval [CI]: 71.8, 84.6), 142/155 (91.6%; 95% CI: 86.1, 95.5) with ALFA, and 169 (100%; 95% CI: 97.8, 100.0) with ECLIA. There were 81 samples with no detectable virus neutralization; 47/81 were negative with self-reported LFIA (specificity 58.0%; 95% CI: 46.5, 68.9), 34/75 (45.3%; 95% CI: 33.8, 57.3) with ALFA, and 0/81 (0%; 95% CI: 0, 4.5) with ECLIA. CONCLUSIONS: Self-administered LFIA is less sensitive than a quantitative antibody test, but the positivity in LFIA correlates better than the quantitative ECLIA with virus neutralization.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Self-Testing , Sensitivity and Specificity , Antibodies, Viral , Immunoassay/methods
6.
PLoS One ; 17(11): e0276799, 2022.
Article in English | MEDLINE | ID: mdl-36327291

ABSTRACT

Accurate capture finger of movements for biomechanical assessments has typically been achieved within laboratory environments through the use of physical markers attached to a participant's hands. However, such requirements can narrow the broader adoption of movement tracking for kinematic assessment outside these laboratory settings, such as in the home. Thus, there is the need for markerless hand motion capture techniques that are easy to use and accurate enough to evaluate the complex movements of the human hand. Several recent studies have validated lower-limb kinematics obtained with a marker-free technique, OpenPose. This investigation examines the accuracy of OpenPose, when applied to images from single RGB cameras, against a 'gold standard' marker-based optical motion capture system that is commonly used for hand kinematics estimation. Participants completed four single-handed activities with right and left hands, including hand abduction and adduction, radial walking, metacarpophalangeal (MCP) joint flexion, and thumb opposition. The accuracy of finger kinematics was assessed using the root mean square error. Mean total active flexion was compared using the Bland-Altman approach, and the coefficient of determination of linear regression. Results showed good agreement for abduction and adduction and thumb opposition activities. Lower agreement between the two methods was observed for radial walking (mean difference between the methods of 5.03°) and MCP flexion (mean difference of 6.82°) activities, due to occlusion. This investigation demonstrated that OpenPose, applied to videos captured with monocular cameras, can be used for markerless motion capture for finger tracking with an error below 11° and on the order of that which is accepted clinically.


Subject(s)
Fingers , Movement , Humans , Biomechanical Phenomena , Metacarpophalangeal Joint , Hand
7.
Commun Med (Lond) ; 2: 78, 2022.
Article in English | MEDLINE | ID: mdl-35814295

ABSTRACT

Background: Lateral flow immunoassays (LFIAs) are being used worldwide for COVID-19 mass testing and antibody prevalence studies. Relatively simple to use and low cost, these tests can be self-administered at home, but rely on subjective interpretation of a test line by eye, risking false positives and false negatives. Here, we report on the development of ALFA (Automated Lateral Flow Analysis) to improve reported sensitivity and specificity. Methods: Our computational pipeline uses machine learning, computer vision techniques and signal processing algorithms to analyse images of the Fortress LFIA SARS-CoV-2 antibody self-test, and subsequently classify results as invalid, IgG negative and IgG positive. A large image library of 595,339 participant-submitted test photographs was created as part of the REACT-2 community SARS-CoV-2 antibody prevalence study in England, UK. Alongside ALFA, we developed an analysis toolkit which could also detect device blood leakage issues. Results: Automated analysis showed substantial agreement with human experts (Cohen's kappa 0.90-0.97) and performed consistently better than study participants, particularly for weak positive IgG results. Specificity (98.7-99.4%) and sensitivity (90.1-97.1%) were high compared with visual interpretation by human experts (ranges due to the varying prevalence of weak positive IgG tests in datasets). Conclusions: Given the potential for LFIAs to be used at scale in the COVID-19 response (for both antibody and antigen testing), even a small improvement in the accuracy of the algorithms could impact the lives of millions of people by reducing the risk of false-positive and false-negative result read-outs by members of the public. Our findings support the use of machine learning-enabled automated reading of at-home antibody lateral flow tests as a tool for improved accuracy for population-level community surveillance.

8.
IEEE Trans Med Imaging ; 41(2): 456-464, 2022 02.
Article in English | MEDLINE | ID: mdl-34606450

ABSTRACT

Although atrial fibrillation (AF) is the most common sustained atrial arrhythmia, treatment success for this condition remains suboptimal. Information from magnetic resonance imaging (MRI) has the potential to improve treatment efficacy, but there are currently few automatic tools for the segmentation of the atria in MR images. In the study, we propose a LA-Net, a multi-task network optimised to simultaneously generate left atrial segmentation and edge masks from MRI. LA-Net includes cross attention modules (CAMs) and enhanced decoder modules (EDMs) to purposefully select the most meaningful edge information for segmentation and smoothly incorporate it into segmentation masks at multiple-scales. We evaluate the performance of LA-Net on two MR sequences: late gadolinium enhanced (LGE) atrial MRI and atrial short axis balanced steady state free precession (bSSFP) MRI. LA-Net gives Hausdorff distances of 12.43 mm and Dice scores of 0.92 on the LGE (STACOM 2018) dataset and Hausdorff distances of 17.41 mm and Dice scores of 0.90 on the bSSFP (in-house) dataset without any post-processing, surpassing previously proposed segmentation networks, including U-Net and SEGANet. Our method allows automatic extraction of information about the LA from MR images, which can play an important role in the management of AF patients.


Subject(s)
Atrial Fibrillation , Heart Atria , Atrial Fibrillation/diagnostic imaging , Gadolinium , Heart Atria/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods
9.
Front Cardiovasc Med ; 8: 768419, 2021.
Article in English | MEDLINE | ID: mdl-35187101

ABSTRACT

Accurately inferring underlying electrophysiological (EP) tissue properties from action potential recordings is expected to be clinically useful in the diagnosis and treatment of arrhythmias such as atrial fibrillation. It is, however, notoriously difficult to perform. We present EP-PINNs (Physics Informed Neural Networks), a novel tool for accurate action potential simulation and EP parameter estimation from sparse amounts of EP data. We demonstrate, using 1D and 2D in silico data, how EP-PINNs are able to reconstruct the spatio-temporal evolution of action potentials, whilst predicting parameters related to action potential duration (APD), excitability and diffusion coefficients. EP-PINNs are additionally able to identify heterogeneities in EP properties, making them potentially useful for the detection of fibrosis and other localised pathology linked to arrhythmias. Finally, we show EP-PINNs effectiveness on biological in vitro preparations, by characterising the effect of anti-arrhythmic drugs on APD using optical mapping data. EP-PINNs are a promising clinical tool for the characterisation and potential treatment guidance of arrhythmias.

10.
Sci Rep ; 10(1): 21683, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33303775

ABSTRACT

Identifying disease-specific patterns of retinal cell loss in pathological conditions has been highlighted by the emergence of techniques such as Detection of Apoptotic Retinal Cells and Adaptive Optics confocal Scanning Laser Ophthalmoscopy which have enabled single-cell visualisation in vivo. Cell size has previously been used to stratify Retinal Ganglion Cell (RGC) populations in histological samples of optic neuropathies, and early work in this field suggested that larger RGCs are more susceptible to early loss than smaller RGCs. More recently, however, it has been proposed that RGC soma and axon size may be dynamic and change in response to injury. To address this unresolved controversy, we applied recent advances in maximising information extraction from RGC populations in retinal whole mounts to evaluate the changes in RGC size distribution over time, using three well-established rodent models of optic nerve injury. In contrast to previous studies based on sampling approaches, we examined the whole Brn3a-positive RGC population at multiple time points over the natural history of these models. The morphology of over 4 million RGCs was thus assessed to glean novel insights from this dataset. RGC subpopulations were found to both increase and decrease in size over time, supporting the notion that RGC cell size is dynamic in response to injury. However, this study presents compelling evidence that smaller RGCs are lost more rapidly than larger RGCs despite the dynamism. Finally, using a bootstrap approach, the data strongly suggests that disease-associated changes in RGC spatial distribution and morphology could have potential as novel diagnostic indicators.


Subject(s)
Cell Size , Optic Nerve Diseases/pathology , Retina/cytology , Retina/pathology , Retinal Ganglion Cells/pathology , Animals , Disease Models, Animal , Male , Mice, Inbred C57BL , Optic Nerve Diseases/diagnosis , Optic Nerve Diseases/etiology , Rats, Inbred Dahl
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1178-1181, 2020 07.
Article in English | MEDLINE | ID: mdl-33018197

ABSTRACT

To date, regional atrial strains have not been imaged in vivo, despite their potential to provide useful clinical information. To address this gap, we present a novel CINE MRI protocol capable of imaging the entire left atrium at an isotropic 2-mm resolution in one single breath-hold. As proof of principle, we acquired data in 10 healthy volunteers and 2 cardiovascular patients using this technique. We also demonstrated how regional atrial strains can be estimated from this data following a manual segmentation of the left atrium using automatic image tracking techniques. The estimated principal strains vary smoothly across the left atrium and have a similar magnitude to estimates reported in the literature.


Subject(s)
Heart Atria , Magnetic Resonance Imaging, Cine , Breath Holding , Heart Atria/diagnostic imaging , Humans
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1198-1202, 2020 07.
Article in English | MEDLINE | ID: mdl-33018202

ABSTRACT

Atrial fibrillation (AF) is the most common sustained arrhythmia and is associated with dramatic increases in mortality and morbidity. Atrial cine MR images are increasingly used in the management of this condition, but there are few specific tools to aid in the segmentation of such data. Some characteristics of atrial cine MR (thick slices, variable number of slices in a volume) preclude the direct use of traditional segmentation tools. When combined with scarcity of labelled data and similarity of the intensity and texture of the left atrium (LA) to other cardiac structures, the segmentation of the LA in CINE MRI becomes a difficult task. To deal with these challenges, we propose a semi-automatic method to segment the left atrium (LA) in MR images, which requires an initial user click per volume. The manually given location information is used to generate a chamber location map to roughly locate the LA, which is then used as an input to a deep network with slightly over 0.5 million parameters. A tracking method is introduced to pass the location information across a volume and to remove unwanted structures in segmentation maps. According to the results of our experiments conducted in an in-house MRI dataset, the proposed method outperforms the U-Net [1] with a margin of 20 mm on Hausdorff distance and 0.17 on Dice score, with limited manual interaction.


Subject(s)
Atrial Fibrillation , Image Processing, Computer-Assisted , Atrial Fibrillation/diagnostic imaging , Heart Atria/diagnostic imaging , Humans , Magnetic Resonance Imaging , Magnetic Resonance Imaging, Cine
13.
Pflugers Arch ; 472(10): 1435-1446, 2020 10.
Article in English | MEDLINE | ID: mdl-32870378

ABSTRACT

We describe a human and large animal Langendorff experimental apparatus for live electrophysiological studies and measure the electrophysiological changes due to gap junction uncoupling in human and porcine hearts. The resultant ex vivo intact human and porcine model can bridge the translational gap between smaller simple laboratory models and clinical research. In particular, electrophysiological models would benefit from the greater myocardial mass of a large heart due to its effects on far-field signal, electrode contact issues and motion artefacts, consequently more closely mimicking the clinical setting. Porcine (n = 9) and human (n = 4) donor hearts were perfused on a custom-designed Langendorff apparatus. Epicardial electrograms were collected at 16 sites across the left atrium and left ventricle. A total of 1 mM of carbenoxolone was administered at 5 ml/min to induce cellular uncoupling, and then recordings were repeated at the same sites. Changes in electrogram characteristics were analysed. We demonstrate the viability of a controlled ex vivo model of intact porcine and human hearts for electrophysiology with pharmacological modulation. Carbenoxolone reduces cellular coupling and changes contact electrogram features. The time from stimulus artefact to (-dV/dt)max increased between baseline and carbenoxolone (47.9 ± 4.1-67.2 ± 2.7 ms) indicating conduction slowing. The features with the largest percentage change between baseline and carbenoxolone were fractionation + 185.3%, endpoint amplitude - 106.9%, S-endpoint gradient + 54.9%, S point - 39.4%, RS ratio + 38.6% and (-dV/dt)max - 20.9%. The physiological relevance of this methodological tool is that it provides a model to further investigate pharmacologically induced pro-arrhythmic substrates.


Subject(s)
Heart/physiology , Isolated Heart Preparation/methods , Adult , Animals , Carbenoxolone/pharmacology , Electrocardiography/methods , Excitation Contraction Coupling , Female , Heart/drug effects , Humans , Isolated Heart Preparation/instrumentation , Male , Myocardium/metabolism , Swine
14.
Comput Biol Med ; 104: 339-351, 2019 01.
Article in English | MEDLINE | ID: mdl-30442428

ABSTRACT

We review some of the latest approaches to analysing cardiac electrophysiology data using machine learning and predictive modelling. Cardiac arrhythmias, particularly atrial fibrillation, are a major global healthcare challenge. Treatment is often through catheter ablation, which involves the targeted localised destruction of regions of the myocardium responsible for initiating or perpetuating the arrhythmia. Ablation targets are either anatomically defined, or identified based on their functional properties as determined through the analysis of contact intracardiac electrograms acquired with increasing spatial density by modern electroanatomic mapping systems. While numerous quantitative approaches have been investigated over the past decades for identifying these critical curative sites, few have provided a reliable and reproducible advance in success rates. Machine learning techniques, including recent deep-learning approaches, offer a potential route to gaining new insight from this wealth of highly complex spatio-temporal information that existing methods struggle to analyse. Coupled with predictive modelling, these techniques offer exciting opportunities to advance the field and produce more accurate diagnoses and robust personalised treatment. We outline some of these methods and illustrate their use in making predictions from the contact electrogram and augmenting predictive modelling tools, both by more rapidly predicting future states of the system and by inferring the parameters of these models from experimental observations.


Subject(s)
Atrial Fibrillation/physiopathology , Electrocardiography , Electrophysiologic Techniques, Cardiac , Heart Conduction System/physiopathology , Machine Learning , Models, Cardiovascular , Atrial Fibrillation/surgery , Catheter Ablation , Heart Conduction System/surgery , Humans
15.
Adv Healthc Mater ; 5(11): 1248, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27275627

ABSTRACT

On page 1310 J. S. Merzaban, A. E. Porter, and co-workers present fluorescently labeled RGD-targeted ZnO nanoparticles (NPs; green) for the targeted delivery of cytotoxic ZnO to integrin αvß3 receptors expressed on triple negative breast cancer cells. Correlative light-electron microscopy shows that NPs dissolve into ionic Zn(2+) (blue) upon uptake and cause apoptosis (red) with intra-tumor heterogeneity, thereby providing a possible strategy for targeted breast cancer therapy. Cover design by Ivan Gromicho.

16.
Adv Healthc Mater ; 5(11): 1310-25, 2016 06.
Article in English | MEDLINE | ID: mdl-27111660

ABSTRACT

ZnO nanoparticles (NPs) are reported to show a high degree of cancer cell selectivity with potential use in cancer imaging and therapy. Questions remain about the mode by which the ZnO NPs cause cell death, whether they exert an intra- or extracellular effect, and the resistance among different cancer cell types to ZnO NP exposure. The present study quantifies the variability between the cellular toxicity, dynamics of cellular uptake, and dissolution of bare and RGD (Arg-Gly-Asp)-targeted ZnO NPs by MDA-MB-231 cells. Compared to bare ZnO NPs, RGD-targeting of the ZnO NPs to integrin αvß3 receptors expressed on MDA-MB-231 cells appears to increase the toxicity of the ZnO NPs to breast cancer cells at lower doses. Confocal microscopy of live MDA-MB-231 cells confirms uptake of both classes of ZnO NPs with a commensurate rise in intracellular Zn(2+) concentration prior to cell death. The response of the cells within the population to intracellular Zn(2+) is highly heterogeneous. In addition, the results emphasize the utility of dynamic and quantitative imaging in understanding cell uptake and processing of targeted therapeutic ZnO NPs at the cellular level by heterogeneous cancer cell populations, which can be crucial for the development of optimized treatment strategies.


Subject(s)
Apoptosis/drug effects , Genetic Heterogeneity/drug effects , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Oligopeptides/metabolism , Triple Negative Breast Neoplasms/drug therapy , Zinc Oxide/administration & dosage , Cell Death/drug effects , Cell Line, Tumor , Humans , Light , MCF-7 Cells , Microscopy, Electron/methods , Triple Negative Breast Neoplasms/metabolism , Zinc Oxide/chemistry
17.
J Biomech Eng ; 135(2): 021023, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23445068

ABSTRACT

Studies investigating the relation between the focal nature of atherosclerosis and hemodynamic factors are employing increasingly rigorous approaches to map the disease and calculate hemodynamic metrics. However, no standardized methodology exists to quantitatively compare these distributions. We developed a statistical technique that can be used to determine if hemodynamic and lesion maps are significantly correlated. The technique, which is based on a surrogate data analysis, does not require any assumptions (such as linearity) on the nature of the correlation. Randomized sampling was used to ensure the independence of data points, another basic assumption of commonly-used statistical methods that is often disregarded. The novel technique was used to compare previously-obtained maps of lesion prevalence in aortas of immature and mature cholesterol-fed rabbits to corresponding maps of wall shear stress, averaged across several animals in each age group. A significant spatial correlation was found in the proximal descending thoracic aorta, but not further downstream. Around intercostal branch openings the correlation was borderline significant in immature but not in mature animals. The results confirm the need for further investigation of the relation between the localization of atherosclerosis and blood flow, in conjunction with appropriate statistical techniques such as the method proposed here.


Subject(s)
Atherosclerosis/physiopathology , Hemodynamics , Statistics as Topic/methods , Animals , Linear Models , Rabbits , Reproducibility of Results , Spatial Analysis
18.
Article in English | MEDLINE | ID: mdl-23367036

ABSTRACT

In this paper, we extend our published work [1] and propose an automated system to segment retinal vessel bed in digital fundus images with enough adaptability to analyze images from fluorescein angiography. This approach takes into account both the global and local context and enables both vessel segmentation and microvascular centreline extraction. These tools should allow researchers and clinicians to estimate and assess vessel diameter, capillary blood volume and microvascular topology for early stage disease detection, monitoring and treatment. Global vessel bed segmentation is achieved by combining phase-invariant orientation fields with neighbourhood pixel intensities in a patch-based feature vector for supervised learning. This approach is evaluated against benchmarks on the DRIVE database [2]. Local microvascular centrelines within Regions-of-Interest (ROIs) are segmented by linking the phase-invariant orientation measures with phase-selective local structure features. Our global and local structural segmentation can be used to assess both pathological structural alterations and microemboli occurrence in non-invasive clinical settings in a longitudinal study.


Subject(s)
Diabetic Retinopathy/pathology , Fluorescein Angiography/methods , Image Interpretation, Computer-Assisted/methods , Pattern Recognition, Automated/methods , Retinal Artery/pathology , Retinoscopy/methods , Algorithms , Humans , Reproducibility of Results , Sensitivity and Specificity
19.
Int J Biomed Imaging ; 2011: 270247, 2011.
Article in English | MEDLINE | ID: mdl-21760766

ABSTRACT

This paper presents an automatic detection method for thin boundaries of silver-stained endothelial cells (ECs) imaged using light microscopy of endothelium mono-layers from rabbit aortas. To achieve this, a segmentation technique was developed, which relies on a rich feature space to describe the spatial neighbourhood of each pixel and employs a Support Vector Machine (SVM) as a classifier. This segmentation approach is compared, using hand-labelled data, to a number of standard segmentation/thresholding methods commonly applied in microscopy. The importance of different features is also assessed using the method of minimum Redundancy, Maximum Relevance (mRMR), and the effect of different SVM kernels is also considered. The results show that the approach suggested in this paper attains much greater accuracy than standard techniques; in our comparisons with manually labelled data, our proposed technique is able to identify boundary pixels to an accuracy of 93%. More significantly, out of a set of 56 regions of image data, 43 regions were binarised to a useful level of accuracy. The results obtained from the image segmentation technique developed here may be used for the study of shape and alignment of ECs, and hence patterns of blood flow, around arterial branches.

20.
Arterioscler Thromb Vasc Biol ; 31(3): 543-50, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21205986

ABSTRACT

OBJECTIVE: The distribution of atherosclerosis around branch sites changes with age in human and rabbit aortas. We tested whether that reflects a change in the pattern of wall shear stress by examining shear-dependent morphological features of endothelial cells. METHODS AND RESULTS: Endothelial cells and their nuclei align and elongate with applied shear. These parameters were examined in the descending thoracic aorta of immature and mature rabbits. The use of Häutchen preparations, fluorescent stains, and automated image analysis allowed nuclear morphology to be mapped reliably at high resolution over large areas. Cells and their nuclei were most elongated downstream of branch ostia in immature aortas but upstream of them in mature aortas. Elongation was generally greater in mature animals, and nuclei aligned toward the ostia more in these animals, consistent with a greater flow into the branch. Morphology away from branches was indicative of helical flow in the aorta, with greatest shear on the dorsal wall, at both ages. CONCLUSIONS: The data are consistent with age-related changes in the pattern of shear around aortic branches. Maps of nuclear elongation closely resembled maps of lesion frequency. The association was positive, implying that lesions occur at sites of high shear stress at both ages.


Subject(s)
Aging , Aorta, Thoracic/pathology , Atherosclerosis/pathology , Endothelial Cells/pathology , Hemodynamics , Age Factors , Animals , Aorta, Thoracic/physiopathology , Atherosclerosis/physiopathology , Cell Nucleus Shape , Cell Shape , Male , Rabbits , Regional Blood Flow , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...