Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
bioRxiv ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39229110

ABSTRACT

Desmosomes are intercellular junctions that mediate cell-cell adhesion and are essential for maintaining tissue integrity. Pemphigus vulgaris (PV) is an autoimmune epidermal blistering disease caused by autoantibodies (IgG) targeting desmoglein 3 (Dsg3), a desmosomal cadherin. PV autoantibodies cause desmosome disassembly and loss of cell-cell adhesion, but the molecular signaling pathways that regulate these processes are not fully understood. Using high-resolution time-lapse imaging of live keratinocytes, we found that ER tubules make frequent and persistent contacts with internalizing Dsg3 puncta in keratinocytes treated with PV patient IgG. Biochemical experiments demonstrated that PV IgG activated ER stress signaling pathways, including both IRE1⍺ and PERK pathways, in cultured keratinocytes. Further, ER stress transcripts were upregulated in PV patient skin. Pharmacological inhibition of ER stress protected against PV IgG-induced desmosome disruption and loss of keratinocyte cell-cell adhesion, suggesting that ER stress may be an important pathomechanism and therapeutically targetable pathway for PV treatment. These data support a model in which desmosome adhesion is integrated with ER function to serve as a cell adhesion stress sensor that is activated in blistering skin disease.

2.
J Cell Biol ; 223(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39120608

ABSTRACT

The desmosome is a cell-cell adhesive junction that provides integrity and mechanical resistance to tissues through its attachment to the intermediate filament cytoskeleton. Defects in desmosomes cause diseases impacting the heart, epidermis, and other epithelia. In this review, we provide a historical perspective on the discovery of the desmosome and how the evolution of cellular imaging technologies revealed insights into desmosome structure and function. We also discuss recent findings using contemporary imaging approaches that have informed the molecular order, three-dimensional architecture, and associations of desmosomes with organelles such as the endoplasmic reticulum. Finally, we provide an updated model of desmosome molecular organization and speculate upon novel functions of this cell junction as a signaling center for sensing mechanical and other forms of cell stress.


Subject(s)
Desmosomes , Desmosomes/metabolism , Desmosomes/ultrastructure , Humans , Animals , Cell Adhesion , Signal Transduction
4.
Nat Cell Biol ; 25(6): 823-835, 2023 06.
Article in English | MEDLINE | ID: mdl-37291267

ABSTRACT

The endoplasmic reticulum (ER) forms a dynamic network that contacts other cellular membranes to regulate stress responses, calcium signalling and lipid transfer. Here, using high-resolution volume electron microscopy, we find that the ER forms a previously unknown association with keratin intermediate filaments and desmosomal cell-cell junctions. Peripheral ER assembles into mirror image-like arrangements at desmosomes and exhibits nanometre proximity to keratin filaments and the desmosome cytoplasmic plaque. ER tubules exhibit stable associations with desmosomes, and perturbation of desmosomes or keratin filaments alters ER organization, mobility and expression of ER stress transcripts. These findings indicate that desmosomes and the keratin cytoskeleton regulate the distribution, function and dynamics of the ER network. Overall, this study reveals a previously unknown subcellular architecture defined by the structural integration of ER tubules with an epithelial intercellular junction.


Subject(s)
Cytoskeleton , Desmosomes , Desmosomes/chemistry , Desmosomes/metabolism , Desmosomes/ultrastructure , Cytoskeleton/metabolism , Keratins/metabolism , Intermediate Filaments/metabolism , Intermediate Filaments/ultrastructure , Endoplasmic Reticulum/metabolism
5.
Dev Biol ; 450(2): 115-131, 2019 06 15.
Article in English | MEDLINE | ID: mdl-30935896

ABSTRACT

Desmoplakin (Dsp) is a unique and critical desmosomal protein, that is integral to epidermal development. However, it is unclear whether this protein is required specifically for epidermal morphogenesis. Using morpholinos or Crispr/Cas9 mutagenesis we decreased the function of Dsp in frog embryos to better understand its role during epidermal development. Dsp morphant and mutant embryos had developmental defects such as epidermal fragility that mimicked what has been reported in mammals. Most importantly, we also uncovered a novel function for Dsp in the morphogenesis of the epidermis in X. laevis. In particular, Dsp is required during the process of radial intercalation where basally located cells move into the outer epidermal layer. Once inserted these newly intercalated cells expand their apical surface and then they differentiate into specific epidermal cell types. Decreased levels of Dsp resulted in the failure of the radially intercalating cells to expand their apical surface, thereby reducing the number of differentiated multiciliated and secretory cells. Such defects correlate with changes in E-cadherin levels and actin and microtubule localization which could explain the defects in apical expansion. A mutated form of Dsp that maintains cell-cell adhesion but eliminates the connections to the cytoskeleton results in the same epidermal morphogenesis defect. These results suggest a specific role for Dsp in the apical expansion of cells during radial intercalation. We have developed a novel system, in the frog, to demonstrate for the first time that desmosomes not only protect against mechanical stress but are also critical for epidermal morphogenesis.


Subject(s)
Cell Adhesion , Cell Communication , Desmoplakins/metabolism , Embryo, Nonmammalian/embryology , Epidermis/embryology , Morphogenesis , Xenopus Proteins/metabolism , Animals , Desmoplakins/genetics , Embryo, Nonmammalian/cytology , Xenopus Proteins/genetics , Xenopus laevis
6.
Dev Dyn ; 246(2): 100-115, 2017 02.
Article in English | MEDLINE | ID: mdl-28032936

ABSTRACT

BACKGROUND: The buccopharyngeal membrane is a thin layer of cells covering the embryonic mouth. The perforation of this structure creates an opening connecting the external and the digestive tube which is essential for oral cavity formation. In humans, persistence of the buccopharyngeal membrane can lead to orofacial defects such as choanal atresia, oral synechiaes, and cleft palate. Little is known about the causes of a persistent buccopharyngeal membrane and, importantly, how this structure ruptures. RESULTS: We have determined, using antisense and pharmacological approaches, that Xenopus embryos deficient c-Jun N-terminal kinase (JNK) signaling have a persistent buccopharyngeal membrane. JNK deficient embryos have decreased cell division and increased cellular stress and apoptosis. However, altering these processes independently of JNK did not affect buccopharyngeal membrane perforation. JNK deficient embryos also have increased intercellular adhesion and defects in e-cadherin localization. Conversely, embryos with overactive JNK have epidermal fragility, increased E-cadherin internalization, and increased membrane localized clathrin. In the buccopharyngeal membrane, clathrin is colocalized with active JNK. Furthermore, inhibition of endocytosis results in a persistent buccopharyngeal membrane, mimicking the JNK deficient phenotype. CONCLUSIONS: The results of this study suggest that JNK has a role in the disassembly adherens junctions by means of endocytosis that is required during buccopharyngeal membrane perforation. Developmental Dynamics 246:100-115, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Intracellular Membranes/metabolism , JNK Mitogen-Activated Protein Kinases/physiology , Mouth/embryology , Xenopus laevis/embryology , Adherens Junctions , Animals , Cadherins/metabolism , Cheek , Endocytosis , Mouth/growth & development , Pharynx
SELECTION OF CITATIONS
SEARCH DETAIL