Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Malar J ; 21(1): 181, 2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35690745

ABSTRACT

BACKGROUND: Vector mosquito biting intensity is an important measure to understand malaria transmission. Human landing catch (HLC) is an effective but labour-intensive, expensive, and potentially hazardous entomological surveillance tool. The Centres for Disease Control light trap (CDC-LT) and the human decoy trap (HDT) are exposure-free alternatives. This study compared the CDC-LT and HDT against HLC for measuring Anopheles biting in rural Tanzania and assessed their suitability as HLC proxies. METHODS: Indoor mosquito surveys using HLC and CDC-LT and outdoor surveys using HLC and HDT were conducted in 2017 and in 2019 in Ulanga, Tanzania in 19 villages, with one trap/house/night. Species composition, sporozoite rates and density/trap/night were compared. Aggregating the data by village and month, the Bland-Altman approach was used to assess agreement between trap types. RESULTS: Overall, 66,807 Anopheles funestus and 14,606 Anopheles arabiensis adult females were caught with 6,013 CDC-LT, 339 indoor-HLC, 136 HDT and 195 outdoor-HLC collections. Indoors, CDC-LT caught fewer An. arabiensis (Adjusted rate ratio [Adj.RR] = 0.35, 95% confidence interval [CI]: 0.27-0.46, p < 0.001) and An. funestus (Adj.RR = 0.63, 95%CI: 0.51-0.79, p < 0.001) than HLC per trap/night. Outdoors, HDT caught fewer An. arabiensis (Adj.RR = 0.04, 95%CI: 0.01-0.14, p < 0.001) and An. funestus (Adj.RR = 0.10, 95%CI: 0.07-0.15, p < 0.001) than HLC. The bias and variability in number of mosquitoes caught by the different traps were dependent on mosquito densities. The relative efficacies of both CDC-LT and HDT in comparison to HLC declined with increased mosquito abundance. The variability in the ratios was substantial for low HLC counts and decreased as mosquito abundance increased. The numbers of sporozoite positive mosquitoes were low for all traps. CONCLUSIONS: CDC-LT can be suitable for comparing mosquito populations between study arms or over time if accuracy in the absolute biting rate, compared to HLC, is not required. CDC-LT is useful for estimating sporozoite rates because large numbers of traps can be deployed to collect adequate mosquito samples. The present design of the HDT is not amenable for use in large-scale entomological surveys. Use of HLC remains important for estimating human exposure to mosquitoes as part of estimating the entomological inoculation rate (EIR).


Subject(s)
Anopheles , Adult , Animals , Centers for Disease Control and Prevention, U.S. , Entomology , Female , Humans , Mosquito Control , Mosquito Vectors , Tanzania , United States
2.
Gates Open Res ; 4: 59, 2020.
Article in English | MEDLINE | ID: mdl-32789289

ABSTRACT

Background: With increasing insecticide resistance in malaria-endemic countries there is an urgent need for safe and effective novel vector control products. To improve the capacity of facilities that test insecticides in sub-Saharan Africa, a programme is supporting seven facilities towards Good Laboratory Practice (GLP) certification, the globally recognized standard for quality management system (QMS) for the conduct of non-clinical and environmental studies. The World Health Organization (WHO) GLP Handbook provides guidance on a stepwise approach to implement a GLP compliant QMS. This study assesses auditor GLP checklists and timings outlined in the WHO GLP Handbook in the real-life context of a Tanzanian insecticide-testing facility, evaluating their implementation in this context. Methods and Principle Findings: We conducted document review and semi-structured interviews with staff at all levels of the test facility to explore factors that influenced progress towards GLP certification. We found that while auditor GLP checklists underemphasised computer systems, they were otherwise broadly applicable. Factors that delayed time to completion of GLP certification included the need for extensive infrastructure improvements, the availability of regional expertise related to GLP, the capacity of national and regional external systems and services to meet GLP compliance requirements, and training development required for Standard Operating Procedure implementation. Conclusion: The standards required for full GLP compliance are rigorous, with an expected completion timeline to implementation of 24 months. This study shows that in low and middle-income countries this timeline may be unrealistic due to challenges related to infrastructure development and lack of regional capacity and expertise. We recommend a comprehensive gap analysis when starting a project, including these areas which are beyond those recommended by the WHO GLP Handbook. These challenges can be successfully overcome and the experience in Tanzania provides key lessons for other facilities seeking GLP certification or the development of similar QMS.

3.
J Infect Dis ; 220(9): 1444-1452, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31249999

ABSTRACT

BACKGROUND: Malaria rapid diagnostic tests (mRDTs) that target histidine-rich protein 2 (HRP2) are important tools for Plasmodium falciparum diagnosis. Parasites with pfhrp2/3 gene deletions threaten the use of these mRDTs and have been reported in Africa, Asia, and South America. We studied blood samples from 3 African countries to determine if these gene deletions were present. METHODS: We analyzed 911 dried blood spots from Ghana (n = 165), Tanzania (n = 176), and Uganda (n = 570). Plasmodium falciparum infection was confirmed by 18S rDNA polymerase chain reaction (PCR), and pfhrp2/3 genes were genotyped. True pfhrp2/3 gene deletions were confirmed if samples were (1) microscopy positive; (2) 18S rDNA PCR positive; (3) positive for merozoite surface protein genes by PCR or positive by loop-mediated isothermal amplification; or (4) quantitative PCR positive with >5 parasites/µL. RESULTS: No pfhrp2/3 deletions were detected in samples from Ghana, but deletions were identified in Tanzania (3 pfhrp2; 2 pfhrp3) and Uganda (7 pfhrp2; 2 pfhrp3). Of the 10 samples with pfhrp2 deletions, 9 tested negative by HRP2-based mRDT. CONCLUSIONS: The presence of pfhrp2/3 deletions in Tanzania and Uganda, along with reports of pfhrp2/3-deleted parasites in neighboring countries, reinforces the need for systematic surveillance to monitor the reliability of mRDTs in malaria-endemic countries.


Subject(s)
Antigens, Protozoan/analysis , Diagnostic Tests, Routine/methods , Gene Deletion , Immunoassay/methods , Malaria, Falciparum/diagnosis , Plasmodium falciparum/genetics , Protozoan Proteins/analysis , Adolescent , Adult , Aged , Aged, 80 and over , Antigens, Protozoan/genetics , Child , Child, Preschool , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , False Negative Reactions , Female , Genotype , Genotyping Techniques , Ghana , Humans , Infant , Infant, Newborn , Male , Microscopy , Middle Aged , Plasmodium falciparum/isolation & purification , Protozoan Proteins/genetics , RNA, Ribosomal, 18S/genetics , Sensitivity and Specificity , Sequence Analysis, DNA , Tanzania , Uganda , Young Adult
4.
Sci Rep ; 7(1): 14718, 2017 11 07.
Article in English | MEDLINE | ID: mdl-29116127

ABSTRACT

Deletions of the Plasmodium falciparum hrp2 and hrp3 genes can affect the performance of HRP2-based malaria rapid diagnostic tests (RDTs). Such deletions have been reported from South America, India and Eritrea. Whether these parasites are widespread in East Africa is unknown. A total of 274 samples from asymptomatic children in Mbita, western Kenya, and 61 genomic  data from Kilifi, eastern Kenya, were available for analysis. PCR-confirmed samples were investigated for the presence of pfhrp2 and pfhrp3 genes. In samples with evidence of deletion, parasite presence was confirmed by amplifying three independent genes. We failed to amplify pfhrp2 from 25 of 131 (19.1%) PCR-confirmed samples. Of these, only 8 (10%) samples were microscopic positive and were classified as pfhrp2-deleted. Eight microscopically-confirmed pfhrp2-deleted samples with intact pfhrp3 locus were positive by HRP2-based RDT. In addition, one PCR-confirmed infection showed a deletion at the pfhrp3 locus. One genomic sample lacked pfhrp2 and one lacked pfhrp3. No sample harbored parasites lacking both genes. Parasites lacking pfhrp2 are present in Kenya, but may be detectable by HRP-based RDT at higher parasitaemia, possibly due to the presence of intact pfhrp3. These findings warrant further systematic study to establish prevalence and diagnostic significance.


Subject(s)
Antigens, Protozoan/genetics , Endemic Diseases , Gene Deletion , Malaria, Falciparum/genetics , Malaria, Falciparum/parasitology , Plasmodium falciparum/drug effects , Protozoan Proteins/genetics , Cross-Sectional Studies , Genes, Protozoan , Humans , Kenya/epidemiology , Malaria, Falciparum/epidemiology , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...