Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Crit Rev Oncol Hematol ; 197: 104346, 2024 May.
Article in English | MEDLINE | ID: mdl-38608913

ABSTRACT

Cervical cancer (CaCx) ranks as the fourth most prevalent cancer among women globally. Persistent infection of high-risk human papillomaviruses (HR-HPVs) is major etiological factor associated with CaCx. Signal Transducer and Activator of Transcription 3 (STAT3), a prominent member of the STAT family, has emerged as independent oncogenic driver. It is a target of many oncogenic viruses including HPV. How STAT3 influences HPV viral gene expression or gets affected by HPV is an area of active investigation. A better understanding of host-virus interaction will provide a prognostic and therapeutic window for CaCx control and management. In this comprehensive review, we delve into carcinogenic role of STAT3 in development of HPV-induced CaCx. With an emphasis on fascinating interplay between STAT3 and HPV genome, the review explores the diverse array of opportunities and challenges associated with this field to harness the prognostic and therapeutic potential of STAT3 in CaCx.


Subject(s)
Papillomavirus Infections , STAT3 Transcription Factor , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/therapy , Uterine Cervical Neoplasms/etiology , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/diagnosis , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Female , Papillomavirus Infections/complications , Papillomavirus Infections/virology , Papillomavirus Infections/therapy , Prognosis , Carcinogenesis/genetics , Papillomaviridae/genetics
2.
Curr Med Chem ; 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38288813

ABSTRACT

Cervical cancer (CaCx) poses a significant global health challenge, ranking as the fourth most common cancer among women worldwide. Despite the emergence of advanced treatment strategies, recurrence remains a bottleneck in favorable treatment outcomes and contributes to poor prognosis. The chemo- or radio-therapy resistance coupled with frequent relapse of more aggressive tumors are some key components that contribute to CaCx-related mortality. The onset of therapy resistance and relapse are attributed to a small subset of, slow-proliferating Cancer Stem Cells (CSC). These CSCs possess the properties of tumorigenesis, self-renewal, and multi-lineage differentiation potential. Because of slow cycling, these cells maintain themselves in a semi-quiescent stage and protect themselves from different anti-proliferative anti-cancer drugs. Keeping in view recent advances in their phenotypic and functional characterization, the feasibility of targeting CSC and associated stem cell signaling bears a strong translational value. The presence of CSC has been reported in CaCx (CCSC) which remains a forefront area of research. However, we have yet to identify clinically useful leads that can target CCSC. There is compelling evidence that phytochemicals, because of their advantages over synthetic anticancer drugs, could emerge as potential therapeutic leads to target these CCSCs. The present article examined the potential of phytochemicals with reported anti-CSC properties and evaluated their future in preclinical and clinical applications against CaCx.

3.
Article in English | MEDLINE | ID: mdl-37936455

ABSTRACT

BACKGROUND: Glioblastoma multiforme (GBM) is characterized by massive tumorinduced angiogenesis aiding tumorigenesis. Vascular endothelial growth factor A (VEGF-A) via VEGF receptor 2 (VEGFR-2) constitutes majorly to drive this process. Putting a halt to tumordriven angiogenesis is a major clinical challenge, and the blood-brain barrier (BBB) is the prime bottleneck in GBM treatment. Several phytochemicals show promising antiangiogenic activity across different models, but their ability to cross BBB remains unexplored. METHODS: We screened over 99 phytochemicals having anti-angiogenic properties reported in the literature and evaluated them for their BBB permeability, molecular interaction with VEGFR-2 domains, ECD2-3 (extracellular domains 2-3) and TKD (tyrosine kinase domain) at VEGF-A and ATP binding site, cell membrane permeability, and hepatotoxicity using in silico tools. Furthermore, the anti-angiogenic activity of predicted lead Trans-Chalcone (TC) was evaluated in the chick chorioallantoic membrane. RESULTS: Out of 99 phytochemicals, 35 showed an efficient ability to cross BBB with a probability score of >0.8. Docking studies revealed 30 phytochemicals crossing benchmark binding affinity <-6.4 kcal/mol of TKD with the native ligand ATP alone. Out of 30 phytochemicals, 12 showed moderate to low hepatotoxicity, and 5 showed a violation of Lipinski's rule of five. Our in silico analysis predicted TC as a BBB permeable anti-angiogenic compound for use in GBM therapy. TC reduced vascularization in the CAM model, which was associated with the downregulation of VEGFR-2 transcript expression. CONCLUSION: The present study showed TC to possess anti-angiogenic potential via the inhibition of VEGFR-2. In addition, the study predicted TC to cross BBB as well as a safe alternative for GBM therapy, which needs further investigation.

4.
BMC Cancer ; 23(1): 1173, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38036978

ABSTRACT

BACKGROUND: Angiogenesis is an important hallmark of Glioblastoma (GBM) marked by elevated vascular endothelial growth factor-A (VEGF-A) and its receptor 2 (VEGFR-2). As previously reported nimbolide (NBL), trans-chalcone (TC) and piperine (PPR) possess promising antiangiogenic activity in several cancers however, their comparative efficacy and mechanism of antiangiogenic activity in GBM against VEGFR-2 has not been elucidated. METHODS: 2D and 3D spheroids cultures of U87 (Uppsala 87 Malignant Glioma) were used for evaluation of non-cytotxoic dose for anti-angiogenic activity. The antiangiogenic effect was investigated by the GBM U87 cell line bearing chick CAM model. Excised U87 xenografts were histologically examined for blood vascular density by histochemistry. Reverse transcriptase polymerase chain reaction (RT-PCR) was used to detect the presence of avian and human VEGF-A and VEGFR-2 mRNA transcripts. RESULTS: Using 2D and 3D spheroid models, the non-cytotoxic dose of NBL, TC and PPR was ≤ 11 µM. We found NBL, TC and PPR inhibit U87-induced neoangiogenesis in a dose-dependent manner in the CAM stand-alone model as well as in CAM U87 xenograft model. The results also indicate that these natural compounds inhibit the expression of notable angiogenic factors, VEGF-A and VEGFR-2. A positive correlation was found between blood vascular density and VEGF-A as well as VEGFR-2 transcripts. CONCLUSION: Taken together, NBL, TC and PPR can suppress U87-induced neoangiogenesis via a reduction in VEGF-A and its receptor VEGFR-2 transcript expression at noncytotoxic concentrations. These phytochemicals showed their utility as adjuvants to GBM therapy, with Piperine demonstrating superior effectiveness among them all.


Subject(s)
Chalcones , Glioblastoma , Humans , Glioblastoma/pathology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Neovascularization, Pathologic/drug therapy , Cell Line, Tumor
5.
Curr Top Med Chem ; 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37867279

ABSTRACT

Angiogenesis, the formation of new blood vessels from a pre-existing vascular network, is an important hallmark of several pathological conditions, such as tumor growth and metastasis, proliferative retinopathies, including proliferative diabetic retinopathy and retinopathy of prematurity, age-related macular degeneration, rheumatoid arthritis, psoriasis, and endometriosis. Putting a halt to pathology-driven angiogenesis is considered an important therapeutic strategy to slow down or reduce the severity of pathological disorders. Considering the attrition rate of synthetic antiangiogenic compounds from the lab to reaching the market due to severe side effects, several compounds of natural origin are being explored for their antiangiogenic properties. Employing pre-clinical models for the evaluation of novel antiangiogenic compounds is a promising strategy for rapid screening of antiangiogenic compounds. These studies use a spectrum of angiogenic model systems that include HUVEC two-dimensional culture, nude mice, chick chorioallantoic membrane, transgenic zebrafish, and dorsal aorta from rats and chicks, depending upon available resources. The present article emphasizes the antiangiogenic activity of the phytochemicals shown to exhibit antiangiogenic behavior in these well-defined existing angiogenic models and highlights key molecular targets. Different models help to get a quick understanding of the efficacy and therapeutics mechanism of emerging lead molecules. The inherent variability in assays and corresponding different phytochemicals tested in each study prevent their immediate utilization in clinical studies. This review will discuss phytochemicals discovered using suitable preclinical antiangiogenic models, along with a special mention of leads that have entered clinical evaluation.

6.
Biochim Biophys Acta Mol Basis Dis ; 1869(8): 166817, 2023 12.
Article in English | MEDLINE | ID: mdl-37532113

ABSTRACT

The constitutive activation and aberrant expression of Signal Transducer and Activator of Transcription 3 (STAT3) plays a key role in initiation and progression of cervical cancer (CaCx). How STAT3 influences HPV transcription is poorly defined. In the present study, we probed direct and indirect interactions of STAT3 with HPV16/18 LCR. In silico assessment of cis-elements present on LCR revealed the presence of potential STAT3 binding motifs. However, experimental validation by ChIP-PCR could not confirm any specific STAT3 binding on HPV16 LCR. Protein-protein interaction (PPI) network analysis of STAT3 with other host transcription factors that bind LCR, highlighted the physical association of STAT3 with c-FOS and c-JUN. This was further confirmed in vitro by co-immunoprecipitation, where STAT3 co-immunoprecipitated with c-FOS and c-JUN in CaCx cells. The result was supported by immunocytochemical analysis and colocalization of STAT3 with c-FOS and c-JUN. Positive signals in proximity ligation assay validated physical interaction and colocalization of STAT3 with AP1. Colocalization of STAT3 with c-FOS and c-JUN increased upon IL-6 treatment and decreased post-Stattic treatment. Alteration of STAT3 expression affected the subcellular localization of c-FOS and c-JUN, along with the expression of viral oncoproteins (E6 and E7) in CaCx cells. High expression of c-JUN in tumor tissues correlated with poor prognosis in both HPV16 and HPV18 CaCx cohort whereas high expression of STAT3 correlated with poor prognosis in HPV18 CaCx lesions only. Overall, the data suggest an indirect interaction of STAT3 with HPV LCR via c-FOS and c-JUN and potentiate transcription of viral oncoproteins.


Subject(s)
Oncogene Proteins, Viral , Papillomavirus Infections , Transcription Factor AP-1 , Uterine Cervical Neoplasms , Female , Humans , Carcinogenesis/genetics , Human papillomavirus 16/genetics , Human papillomavirus 18/genetics , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Papillomavirus Infections/complications , Papillomavirus Infections/genetics , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology
7.
Homeopathy ; 112(4): 262-274, 2023 11.
Article in English | MEDLINE | ID: mdl-36858077

ABSTRACT

BACKGROUND: Plant-derived homeopathic medicines (HMs) are cheap and commercially available but are mechanistically less explored entities than conventional medicines. PURPOSE: The aim of our study was to evaluate the impact of selected plant-derived HMs derived from Berberis aquifolium (BA), Berberis vulgaris (BV), Mentha piperita (MP), Curcuma longa (CL), Cinchona officinalis (CO), Thuja occidentalis (TO) and Hydrastis canadensis (HC) on cervical cancer (CaCx) cells in vitro. METHODS: We screened the mother tincture (MT) and 30C potencies of the above-mentioned HMs for anti-proliferative and cytotoxic activity on human papillomavirus (HPV)-negative (C33a) and HPV-positive CaCx cells (SiHa and HeLa) by MTT assay. Total phenolic content (TPC) and the free-radical scavenging activity of each HM was also determined using standard assays. Phytochemicals reportedly available in these HMs were examined for their potential inhibitory action on HPV16 E6 by in silico molecular docking. RESULTS: All tested MTs induced a differential dose-dependent cytotoxic response that varied with cell line. For C33a cells, the order of response was TO > CL > BA > BV > HC > MP > CO, whereas for SiHa and HeLa cells the order was HC > MP > TO > CO > BA > BV > CL and CL > BA > CO, respectively. 30C potencies of all HMs showed an inconsistent response. Further, anti-CaCx responses displayed by MTs did not follow the order of an HM's phenolic content or free radical scavenging activity. Analysis revealed anti-oxidant content of BA, BV and HC had the lowest contribution to their anti-CaCx activity. Using in silico modeling of molecular docking between the HPV16 E6 protein crystallographic structures (6SJA and 4XR8) and main phytochemical components of BV, BA, HC, CL and TO, their potential to inhibit the HPV16 E6 protein carcinogenic interactions was identified. CONCLUSION: The study has shown a comparative evaluation of the potential of several plant-derived MTs and HMs to affect CaCx cell line survival in vitro (through cytotoxicity and free radical scavenging) and their theoretical molecular targets in silico for the first time. Data demonstrated that MTs of BA and BV are likely to be the most potent HMs that strongly inhibited CaCx growth and have a strong anti-HPV phytochemical constitution.


Subject(s)
Antineoplastic Agents , Homeopathy , Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/metabolism , HeLa Cells , Molecular Docking Simulation , Antineoplastic Agents/pharmacology , Phytochemicals/pharmacology , Free Radicals , Cell Line, Tumor
8.
Int J Dev Biol ; 67(4): 115-135, 2023.
Article in English | MEDLINE | ID: mdl-38334179

ABSTRACT

Drug discovery is an extensive process. From identifying lead compounds to approval for clinical application, it goes through a sequence of labor-intensive in vitro, in vivo preclinical screening and clinical trials. Among thousands of drugs screened only a few get approval for clinical trials. Furthermore, these approved drugs are often discontinued due to systemic toxicity and comorbidity at clinically administered dosages. To overcome these limitations, nanoformulations have emerged as the most sought-after strategy to safely and effectively deliver drugs within tumors at therapeutic concentrations. Most importantly, the employment of suitably variable preclinical models is considered highly critical for the therapeutic evaluation of candidate drugs or their formulations. A review of literature from the past 10 years on antiangiogenic nanoformulations shows the employment of limited types of preclinical models mainly the 2-dimensional (2D) monolayer cell culture and murine models as the mainstay for drug uptake, toxicity and efficiency studies. To top it all, murine models are highly expensive, time-consuming and require expertise in handling them. The current review highlights the utilization of the age-old chicken chorioallantoic membrane (CAM), a well-defined angiogenic model in the investigation of antiangiogenic compounds and nanoformulations in an economic framework. For practical applicability, we have evaluated the CAM model to demonstrate the screening of antiangiogenic compounds and that tumor cells can be implanted onto developing CAM for growing xenografts by recruiting host endothelial and other cellular components. In addition, the exploitation of CAM tumor xenograft models for the evaluation of nanoparticle distribution has also been reinforced by demonstrating that intravenously administered iron oxide nanoparticles (IONPs) passively accumulate and exhibit intracellular as well as extracellular compartment accumulation in highly vascular xenografts. Finally, the ethical considerations, benefits, and drawbacks, of using CAM as an experimental model for testing potential therapeutics are also highlighted.


Subject(s)
Chickens , Neoplasms , Humans , Animals , Mice , Chorioallantoic Membrane/blood supply , Chorioallantoic Membrane/metabolism , Neoplasms/metabolism , Cell Culture Techniques
9.
Med Oncol ; 39(12): 255, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36224441

ABSTRACT

The precise mechanism of action of Janus Kinases (JAK)/Signal Transducer and activator of Transcription (STAT) signaling in human papillomavirus (HPV)-associated cervical cancer (CaCx) is poorly defined. The present study dissected the underlying components of JAK/STAT signaling in HPV-positive cervical neoplasms. Whole transcriptome profile of CaCx cohort from TCGA database revealed elevated STAT3 and its impact on CaCx patients' survival. Using the RT2 Profiler PCR Array, we analyzed 84 genes of interest associated with JAK/STAT signaling in mRNA derived from HPV-negative and HPV-positive cervical lesions which revealed 21 differentially expressed genes (DEGs). Analyses of DEGs using the Database for Annotation, Visualization and Integrated Discovery tool indicated maximum genes enriched in immune response and negative regulation of apoptotic process. Protein-protein network analysis indicated IL4, STAT5A, STAT4, and JAK3 to be the key genes in the interaction network. Further, 7 key DEGs (IL4R, IRF1, EGFR, OAS1, PIAS1, STAT4, and STAT5A) were validated in TCGA cohort using R2 platform. These genes were differentially expressed among HPV-positive cervical tissues and their correlation with STAT3 was established. EGFR and IL4R showed a comparatively strong correlation with STAT3 that supports their involvement in pathogenesis of CaCx. Finally, the Kaplan-Meier analysis established the prognostic association of the key DEGs, in CaCx cohort. The STAT3 and associated key genes discovered from our study establish a strong pathogenic role of JAK/STAT3 pathway in HPV-mediated cervical carcinogenesis.


Subject(s)
Alphapapillomavirus , Papillomavirus Infections , Uterine Cervical Neoplasms , Alphapapillomavirus/genetics , Alphapapillomavirus/metabolism , Carcinogenesis , ErbB Receptors/metabolism , Female , Humans , Interleukin-4 , Janus Kinases/genetics , Janus Kinases/metabolism , Papillomaviridae/genetics , Papillomavirus Infections/complications , Papillomavirus Infections/genetics , RNA, Messenger , Signal Transduction/genetics , Uterine Cervical Neoplasms/genetics
10.
RSC Adv ; 12(37): 24412-24426, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36128524

ABSTRACT

In order to explore new antifungal agrochemicals, we reported the synthesis of two series 5a-f, 6 and 7a-f, 8 of benzothiazole-appended bis-triazole derivative-based structural isomers using a molecular hybridization approach. The synthesized compounds were tested for fungal growth inhibition against the plant pathogen Rhizoctonia solani. All the synthesized compounds showed excellent antifungal activity in their minimum concentrations (10-0.62 µM). Among all the synthetics, compounds 5b (ED50: 2.33 µM), 5f (ED50: 0.96 µM), and 7f (ED50: 1.48 µM) exerted a superior inhibitory effect in comparison to the commercially available fungicide, hexaconazole (ED50: 2.44 µM). The binding interactions of the active compounds 5f, 7f, 6, and 8 within the active site of the sterol 14α-demethylase enzyme were studied with the help of molecular docking studies. The studies revealed that these hybrid pharmacophores could be used as an important intermediate to demonstrate new structural isomer-based fungicides.

11.
Med Oncol ; 39(11): 173, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35972700

ABSTRACT

RNA splicing is the fundamental process that brings diversity at the transcriptome and proteome levels. The spliceosome complex regulates minor and major processes of RNA splicing. Aberrant regulation is often associated with different diseases, including diabetes, stroke, hypertension, and cancer. In the majority of cancers, dysregulated alternative RNA splicing (ARS) events directly affect tumor progression, invasiveness, and often lead to poor survival of the patients. Alike the rest of the gastrointestinal malignancies, in hepatocellular carcinoma (HCC), which alone contributes to ~ 75% of the liver cancers, a large number of ARS events have been observed, including intron retention, exon skipping, presence of alternative 3'-splice site (3'SS), and alternative 5'-splice site (5'SS). These events are reported in spliceosome and non-spliceosome complexes genes. Molecules such as MCL1, Bcl-X, and BCL2 in different isoforms can behave as anti-apoptotic or pro-apoptotic, making the spliceosome complex a dual-edged sword. The anti-apoptotic isoforms of such molecules bring in resistance to chemotherapy or cornerstone drugs. However, in contrast, multiple malignant tumors, including HCC that target the pro-apoptotic favoring isoforms/variants favor apoptotic induction and make chemotherapy effective. Herein, we discuss different splicing events, aberrations, and antisense oligonucleotides (ASOs) in modulating RNA splicing in HCC tumorigenesis with a possible therapeutic outcome.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Alternative Splicing , Carcinoma, Hepatocellular/genetics , Humans , Introns , Liver Neoplasms/genetics , Protein Isoforms/genetics , RNA Splice Sites
12.
BMC Cancer ; 22(1): 164, 2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35148692

ABSTRACT

BACKGROUND: Exosomes play a key role in cell-to-cell communication and are integral component of the tumor microenvironment. Recent observations suggest transfer of RNA through tumor-derived exosomes that can potentially translate into regulatory proteins in the recipient cells. Role of cervical cancer-derived exosomes and their transcript cargo is poorly understood. MATERIALS AND METHODS: The total RNA of exosomes from HPV-positive (SiHa and HeLa) and HPV-negative (C33a) cervical cancer cell lines were extracted and the transcripts were estimated using Illumina HiSeq X. Further, validation of HPV transcripts were performed using RT-PCR. RESULTS: 3099 transcripts were found to be differentially-exported in HPV-positive vs. HPV-negative exosomes (p value <0.05). Analysis of top 10 GO terms and KEGG pathways showed enrichment of transcripts belonging to axon guidance and tumor innervation in HPV-positive exosomes. Among top 20 overexpressed transcripts, EVC2, LUZP1 and ANKS1B were the most notable due to their involvement in Hh signaling, cellular migration and invasion, respectively. Further, low levels of HPV-specific reads were detected. RT-PCR validation revealed presence of E6*I splice variant of HPV18 in exosomal RNA of HeLa cells. The E6*I transcripts were consistently retained in exosomes obtained from HeLa cells undergoing 5-FU and cisplatin-induced oxidative stress. CONCLUSION: Our data suggests the enrichment of poly-A RNA transcripts in the exosomal cargo of cervical cancer cells, which includes pro-tumorigenic cellular RNA and viral transcripts such as HPV E6, which may have clinical utility as potential exosomal biomarkers of cervical cancer.


Subject(s)
Exosomes/genetics , Exosomes/virology , Oncogene Proteins, Viral/genetics , RNA, Viral/genetics , Uterine Cervical Neoplasms/virology , Biomarkers, Tumor/genetics , Cell Line, Tumor , Female , Gene Expression Profiling , HeLa Cells , Humans
13.
Med Oncol ; 39(1): 13, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34792663

ABSTRACT

Incidence of human papillomavirus (HPV)-associated oral cancers is on the rise. However, epidemiological data of this subset of cancers are limited. Dental hospital poses a unique advantage in detection of HPV-positive oral malignancies. We assessed the utility of formalin-fixed paraffin-embedded (FFPE) tissues, which are readily available, for evaluation of high-risk HPV infection in oral cancer. For protocol standardization, we used 20 prospectively collected paired FFPE and fresh tissues of histopathologically confirmed oral cancer cases reported in Oral Medicine department of a dental hospital for comparative study. Only short PCRs (~ 200 bp) of DNA isolated using a modified xylene-free method displayed a concordant HPV result. For HPV analysis, we used additional 30 retrospectively collected FFPE tissues. DNA isolated from these specimens showed an overall 23.4% (11/47) HPV positivity with detection of HPV18. Comparison of HPV positivity from dental hospital FFPE specimens with overall HPV positivity of freshly collected oral cancer specimens (n = 55) from three cancer care hospitals of the same region showed notable difference (12.7%; 7/55). Further, cancer hospital specimens showed HPV16 positivity and displayed a characteristic difference in reported sub-sites and patient spectrum. Overall, using a xylene-free FFPE DNA isolation method clubbed with short amplicon PCR, we showed detection of HPV-positive oral cancer in dental hospitals.


Subject(s)
Alphapapillomavirus/isolation & purification , Dental Facilities , Mouth Neoplasms/diagnosis , Papillomavirus Infections/diagnosis , Adult , Aged , Alphapapillomavirus/genetics , DNA, Viral/genetics , Female , Formaldehyde , Genotype , Humans , India/epidemiology , Male , Middle Aged , Mouth Neoplasms/pathology , Mouth Neoplasms/virology , Papillomavirus Infections/pathology , Papillomavirus Infections/virology , Paraffin Embedding , Polymerase Chain Reaction , Prevalence , Tissue Fixation
14.
Front Pharmacol ; 12: 699044, 2021.
Article in English | MEDLINE | ID: mdl-34354591

ABSTRACT

Head and neck cancer (HNC) usually arises from squamous cells of the upper aerodigestive tract that line the mucosal surface in the head and neck region. In India, HNC is common in males, and it is the sixth most common cancer globally. Conventionally, HNC attributes to the use of alcohol or chewing tobacco. Over the past four decades, portions of human papillomavirus (HPV)-positive HNC are increasing at an alarming rate. Identification based on the etiological factors and molecular signatures demonstrates that these neoplastic lesions belong to a distinct category that differs in pathological characteristics and therapeutic response. Slow development in HNC therapeutics has resulted in a low 5-year survival rate in the last two decades. Interestingly, HPV-positive HNC has shown better outcomes following conservative treatments and immunotherapies. This raises demand to have a pre-therapy assessment of HPV status to decide the treatment strategy. Moreover, there is no HPV-specific treatment for HPV-positive HNC patients. Accumulating evidence suggests that phytochemicals are promising leads against HNC and show potential as adjuvants to chemoradiotherapy in HNC. However, only a few of these phytochemicals target HPV. The aim of the present article was to collate data on various leading phytochemicals that have shown promising results in the prevention and treatment of HNC in general and HPV-driven HNC. The review explores the possibility of using these leads against HPV-positive tumors as some of the signaling pathways are common. The review also addresses various challenges in the field that prevent their use in clinical settings.

15.
Cancer Cell Int ; 21(1): 319, 2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34167524

ABSTRACT

BACKGROUND: Angiogenic switch is a hallmark feature of transition from low-grade to high-grade cervical intraepithelial neoplasia (CIN) in cervical cancer progression. Therefore, early events leading to locally-advanced cervical metastatic lesions demand a greater understanding of the underlying mechanisms. Recent leads indicate the role of tumor-derived exosomes in altering the functions of endothelial cells in cervical cancer, which needs further investigation. METHODS: Exosomes isolated from cervical cancer cell lines were assessed for their angiogenic effect on the human umbilical vein endothelial cells (HUVEC) using tube formation and wound healing assay. The exosomal uptake by HUVEC cells was monitored using PKH-67 labelling followed by fluorescence microscopy. Alterations in Hh-GLI signaling components, PTCH1 and GLI1, in HUVEC were measured by immunoblotting. Changes in angiogenesis-related transcripts of vascular endothelial growth factor VEGF-A, VEGF-B, VEGFR2 and angiopoietin-1, angiopoietin-2, osteopontin were measured in exosome-treated HUVEC and in the exosomal RNA by RT-PCR. RESULTS: Enhanced tube formation, with an increased number of nodes and branching was observed in HUVEC's treated with exosomes derived from different cervical cancer cell lines. HPV-positive (SiHa and HeLa) cells' exosomes were more angiogenic. Exosome-treated HUVEC showed increased migration rate. PKH-67 labelled exosomes were found internalized in HUVEC. A high level of PTCH1 protein was detected in the exosome-treated endothelial cells. Subsequent RT-PCR analysis showed increased transcripts of Hh-GLI downstream target genes VEGF-A, VEGFR2, angiopoietin-2, and decreased expression of VEGF-B, and angiopoietin-1, suggestive of active Hh-GLI signaling. These effects were more pronounced in HUVEC's treated with exosomes of HPV-positive cells. However, these effects were independent of tumor-derived VEGF-A as exosomal cargo lacked VEGF-A transcripts or proteins. CONCLUSION: Overall, the data showed cervical cancer exosomes promote pro-angiogenic response in endothelial cells via upregulation of Hh-GLI signaling and modulate downstream angiogenesis-related target genes. The study provides a novel exosome-mediated mechanism potentially favoring cervical angiogenesis and thus identifies the exosomes as potential pharmacological targets against locally-advanced metastatic cervical lesions.

16.
Biomark Res ; 9(1): 31, 2021 May 06.
Article in English | MEDLINE | ID: mdl-33958005

ABSTRACT

Reversion of tumor to a normal differentiated cell once considered a dream is now at the brink of becoming a reality. Different layers of molecules/events such as microRNAs, transcription factors, alternative RNA splicing, post-transcriptional, post-translational modifications, availability of proteomics, genomics editing tools, and chemical biology approaches gave hope to manipulation of cancer cells reversion to a normal cell phenotype as evidences are subtle but definitive. Regardless of the advancement, there is a long way to go, as customized techniques are required to be fine-tuned with precision to attain more insights into tumor reversion. Tumor regression models using available genome-editing methods, followed by in vitro and in vivo proteomics profiling techniques show early evidence. This review summarizes tumor reversion developments, present issues, and unaddressed challenges that remained in the uncharted territory to modulate cellular machinery for tumor reversion towards therapeutic purposes successfully. Ongoing research reaffirms the potential promises of understanding the mechanism of tumor reversion and required refinement that is warranted in vitro and in vivo models of tumor reversion, and the potential translation of these into cancer therapy. Furthermore, therapeutic compounds were reported to induce phenotypic changes in cancer cells into normal cells, which will contribute in understanding the mechanism of tumor reversion. Altogether, the efforts collectively suggest that tumor reversion will likely reveal a new wave of therapeutic discoveries that will significantly impact clinical practice in cancer therapy.

17.
PLoS One ; 14(9): e0222089, 2019.
Article in English | MEDLINE | ID: mdl-31487312

ABSTRACT

Our earlier studies indicated an important role of inducible transcription factor STAT3 in the establishment of persistent infection of human papillomavirus (HPV) type 16 and promotion of cervical carcinogenesis. Since HPV load and its physical state are two potential determinants of this virally-induced carcinogensis, though with some exceptions, we extended our study to examine the role of active STAT3 level in cervical precancer and cancer lesions and it's association with HPV viral load and physical state. An elevated level of active STAT3 was measured by assessing phospho-STAT3-Y705 (pSTAT3), in tumor tissues harboring higher viral load irrespective of the disease grade. Physical state analysis of HPV16 by assessing the degree of amplification of full length E2 and comparing it with E6 (E2:E6 ratio), which predominantly represent episomal form of HPV16, revealed low or undetectable pSTAT3. A strong pSTAT3 immunoreactivity was found in tissues those harbored either mixed or predominantly integrated form of viral genome. Cumulative analysis of pSTAT3 expression, viral load and physical state demonstrated a direct correlation between pSTAT3 expression, viral load and physical state of HPV. The study suggests that there exists a strong clinical correlation between level of active STAT3 expression and HPV genome copy number, and integrated state of the virus that may play a pivotal role in promotion/maintanence of tumorigenic phenotype.


Subject(s)
DNA Copy Number Variations , Genome, Viral , Papillomavirus Infections/complications , Precancerous Conditions/pathology , STAT3 Transcription Factor/metabolism , Uterine Cervical Dysplasia/pathology , Uterine Cervical Neoplasms/pathology , DNA, Viral/genetics , Female , Human papillomavirus 16/isolation & purification , Humans , Middle Aged , Papillomavirus Infections/virology , Phosphorylation , Precancerous Conditions/genetics , Precancerous Conditions/metabolism , Precancerous Conditions/virology , Prognosis , STAT3 Transcription Factor/genetics , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/virology , Viral Load , Virus Integration , Uterine Cervical Dysplasia/genetics , Uterine Cervical Dysplasia/metabolism , Uterine Cervical Dysplasia/virology
18.
Nanomedicine (Lond) ; 13(17): 2127-2138, 2018 09.
Article in English | MEDLINE | ID: mdl-30265222

ABSTRACT

AIM: To investigate export of Hedgehog pathway (Hh) proteins Patched1, Smoothened, Sonic hedgehog and Indian hedgehog in cervical cancer cell line (CaCx) exosomes. METHODS: Exosomes were isolated and characterized by Western blotting, scanning electron microscopy and in a colorimetric assay. Nucleic acids (RNA, DNA) and protein content of exosomes were analyzed. Hh pathway proteins in exosomes were detected using Western blotting. RESULTS: CaCx secrete bio-macromolecule (DNA, RNA and proteins) enriched exosomes. CaCx exosomes contained higher amount of RNA with respect to DNA. CaCx preferentially exported Hh proteins (Patched1, Smoothened,  Sonic hedgehog, Indian hedgehog) in their exosomes. Cellular uptake assay revealed rapid internalization of CaCx exosomes in human umbilical vein endothelial cells. CONCLUSION: Our study showed that Hh proteins are exported in CaCx exosomes.


Subject(s)
Exosomes/metabolism , Hedgehog Proteins/metabolism , Uterine Cervical Neoplasms/metabolism , Cell Line, Tumor , Female , Humans , Patched-1 Receptor/metabolism , Receptors, Cell Surface/metabolism , Signal Transduction , Smoothened Receptor/metabolism
19.
J Transl Med ; 16(1): 14, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29370858

ABSTRACT

Extensive research within the last several decades has revealed that the major risk factors for most chronic diseases are infections, obesity, alcohol, tobacco, radiation, environmental pollutants, and diet. It is now well established that these factors induce chronic diseases through induction of inflammation. However, inflammation could be either acute or chronic. Acute inflammation persists for a short duration and is the host defense against infections and allergens, whereas the chronic inflammation persists for a long time and leads to many chronic diseases including cancer, cardiovascular diseases, neurodegenerative diseases, respiratory diseases, etc. Numerous lines of evidence suggest that the aforementioned risk factors induced cancer through chronic inflammation. First, transcription factors NF-κB and STAT3 that regulate expression of inflammatory gene products, have been found to be constitutively active in most cancers; second, chronic inflammation such as pancreatitis, prostatitis, hepatitis etc. leads to cancers; third, activation of NF-κB and STAT3 leads to cancer cell proliferation, survival, invasion, angiogenesis and metastasis; fourth, activation of NF-κB and STAT3 leads to resistance to chemotherapy and radiation, and hypoxia and acidic conditions activate these transcription factors. Therefore, targeting these pathways may provide opportunities for both prevention and treatment of cancer and other chronic diseases. We will discuss in this review the potential of various dietary agents such as spices and its components in the suppression of inflammatory pathways and their roles in the prevention and therapy of cancer and other chronic diseases. In fact, epidemiological studies do indicate that cancer incidence in countries such as India where spices are consumed daily is much lower (94/100,000) than those where spices are not consumed such as United States (318/100,000), suggesting the potential role of spices in cancer prevention.


Subject(s)
Chronic Disease , Inflammation/pathology , Spices , Animals , Dietary Supplements , Humans , Signal Transduction
20.
Front Biosci (Schol Ed) ; 10(1): 21-47, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28930517

ABSTRACT

High-risk human papillomaviruses (HPVs) are oncogenic DNA viruses that promote carcinogenic signaling by their oncoproteins mainly E6 and E7. A well-defined promoter regulates expression and enhancer region on HPV genome containing number of cis elements that essentially require a set of cognate host transcription factors to regulate viral promoter gene activity. Expression of these host factors is tightly regulated at multiple levels such as transcriptional, post-transcriptional and post-translational level. Discovery of microRNAs (miRs) in recent years and differential expression of a set of specific miRs in HPV infection and cervical lesions indicate that among various regulatory mechanisms, role of these differentially expressed miRs in the post-transcriptional control is pivotal. Present review analyses and attempts to compile currently available miR data related to HPV infection and cervical carcinogenesis with a special focus on miRs that may regulate expression of the host and viral factors particularly responsible for viral transcription leading to carcinogenic progression of the lesion. Further, the review attempts to assess the therapeutic potential of miR-based strategies in therapeutic targeting of HPV infection during cervical carcinogenesis.


Subject(s)
Carcinogenesis/genetics , MicroRNAs/genetics , Papillomaviridae/genetics , Papillomavirus Infections/genetics , Transcription Factors/genetics , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/virology , Female , Humans , Papillomavirus Infections/pathology , Uterine Cervical Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...