Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Am J Trop Med Hyg ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772359

ABSTRACT

India is a major contributor to the global burden of malaria, especially Plasmodium vivax infection. Understanding the spatiotemporal trends of malaria across India over the last two decades may assist in targeted intervention. The population-normalized spatiotemporal trends of malaria epidemiology in India from 2007 to 2022 were analyzed using a geographic information system with the publicly available "malaria situation" report of the National Vector Borne Disease Control Program (NVBDCP). The NVBDCP data showed malaria cases to have steeply declined from 1.17 million in 2015 to 0.18 million cases in 2022; this is 10.1 and 18.7 fold lower than the WHO's estimate of 11.93 million and 3.38 million cases in 2015 and 2022, respectively. From 2007 to 2022, Mizoram, Meghalaya, Tripura, Odisha, Chhattisgarh, and Jharkhand consistently reported high caseloads of Plasmodium falciparum. In the same period, the P. vivax caseload was high in Arunachal Pradesh, Mizoram, Nagaland, Jharkhand, Odisha, Chhattisgarh, Goa, Daman and Diu, Dadra and Nagar Haveli, and Andaman and Nicobar Islands. The distribution of forest cover, annual rainfall, and proportion of the Scheduled Tribe population (the most underprivileged in Indian society) spatially correlated with malaria cases and deaths. Mizoram is the only state where cases were higher in 2022 than in 2007. Overall, India has made tremendous progress in controlling malaria and malaria-related deaths in the last decade. The decline could be attributed to the effective vector and parasite control strategies implemented across the country.

2.
Am J Trop Med Hyg ; 110(5): 910-920, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38574550

ABSTRACT

Surveillance for genetic markers of resistance can provide valuable information on the likely efficacy of antimalarials but needs to be targeted to ensure optimal use of resources. We conducted a systematic search and review of publications in seven databases to compile resistance marker data from studies in India. The sample collection from the studies identified from this search was conducted between 1994 and 2020, and these studies were published between 1994 and 2022. In all, Plasmodium falciparum Kelch13 (PfK13), P. falciparum dihydropteroate synthase, and P. falciparum dihydrofolate reductase (PfDHPS) genotype data from 2,953, 4,148, and 4,222 blood samples from patients with laboratory-confirmed malaria, respectively, were extracted from these publications and uploaded onto the WorldWide Antimalarial Resistance Network molecular surveyors. These data were fed into hierarchical geostatistical models to produce maps with a predicted prevalence of the PfK13 and PfDHPS markers, and of the associated uncertainty. Zones with a predicted PfDHPS 540E prevalence of >15% were identified in central, eastern, and northeastern India. The predicted prevalence of PfK13 mutants was nonzero at only a few locations, but were within or adjacent to the zones with >15% prevalence of PfDHPS 540E. There may be a greater probability of artesunate-sulfadoxine-pyrimethamine failures in these regions, but these predictions need confirmation. This work can be applied in India and elsewhere to help identify the treatments most likely to be effective for malaria elimination.


Subject(s)
Antimalarials , Artemisinins , Drug Combinations , Drug Resistance , Malaria, Falciparum , Plasmodium falciparum , Pyrimethamine , Sulfadoxine , Plasmodium falciparum/genetics , Plasmodium falciparum/drug effects , Pyrimethamine/therapeutic use , Pyrimethamine/pharmacology , Sulfadoxine/therapeutic use , Sulfadoxine/pharmacology , India/epidemiology , Drug Resistance/genetics , Antimalarials/therapeutic use , Antimalarials/pharmacology , Humans , Malaria, Falciparum/epidemiology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Artemisinins/therapeutic use , Artemisinins/pharmacology , Tetrahydrofolate Dehydrogenase/genetics , Genetic Markers , Dihydropteroate Synthase/genetics , Protozoan Proteins/genetics
3.
Front Public Health ; 12: 1363736, 2024.
Article in English | MEDLINE | ID: mdl-38655519

ABSTRACT

India contributed approximately 66% of the malaria cases in the WHO South-East Asia region in 2022. In India, approximately 44% of cases have been reported to be disproportionately contributed by approximately 27 districts. A comparative analysis of reported malaria cases between January 2017 and December 2022 was performed in Mandla district, which is the site of a model malaria elimination demonstration project (MEDP) in Madhya Pradesh (MP), India. Compared to 2017, the decrease in malaria cases in Mandla from 2018 to 2022 was higher than MP and the rest of the country. The reduction of cases was significant in 2018, 2019, and 2021 (p < 0.01) (Mandla vs. MP) and was highly significant during 2018-2022 (p < 0.001) (Mandla vs. India). Robust surveillance and real-time data-based decisions accompanied by appropriate management, operational controls, and independent reviews, all designed for resource optimisation, were the reasons for eliminating indigenous malaria in Mandla district. The increase in infection rates during the months immediately following rains suggests that surveillance, vector control, and case management efforts should be specifically intensified for eliminating imported and indigenous cases in the near-elimination districts to work towards achieving the national elimination goal of 2030.


Subject(s)
Disease Eradication , Malaria , India/epidemiology , Humans , Disease Eradication/statistics & numerical data , Malaria/prevention & control , Malaria/epidemiology
4.
J Cell Biochem ; 125(3): e30533, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38345373

ABSTRACT

Dihydrofolate reductase (DHFR) is a ubiquitous enzyme that regulates the biosynthesis of tetrahydrofolate among various species of Plasmodium parasite. It is a validated target of the antifolate drug pyrimethamine (Pyr) in Plasmodium falciparum (Pf), but its clinical efficacy has been hampered due to the emergence of drug resistance. This has made the attempt to screen Food & Drug Administration-approved drugs against wild- and mutant PfDHFR by employing an in-silico pipeline to identify potent candidates. The current study has followed a virtual screening approach for identifying potential DHFR inhibitors from DrugBank database, based on a structure similarity search of candidates, followed by absorption, distribution, metabolism, and excretion estimation. The screened drugs were subjected to various parameters like docking, molecular mechanics with generalized born and surface area solvation calculations, and molecular simulations. We have thus identified two potential drug candidates, duloxetine and guanethidine, which can be repurposed to be tested for their efficacy against wild type and drug resistant falciparum malaria.


Subject(s)
Antimalarials , Folic Acid Antagonists , Malaria , Humans , Antimalarials/pharmacology , Antimalarials/chemistry , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/chemistry , Tetrahydrofolate Dehydrogenase/metabolism , Pharmaceutical Preparations , Drug Repositioning , Malaria/drug therapy , Folic Acid Antagonists/pharmacology , Folic Acid Antagonists/chemistry , Drug Resistance , Folic Acid
5.
Trials ; 25(1): 154, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424577

ABSTRACT

BACKGROUND: Plasmodium vivax remains a major challenge for malaria control and elimination due to its ability to cause relapsing illness. To prevent relapses the Indian National Center for Vector Borne Diseases Control (NCVBDC) recommends treatment with primaquine at a dose of 0.25 mg/kg/day provided over 14 days. Shorter treatment courses may improve adherence and treatment effectiveness. METHODS: This is a hospital-based, randomised, controlled, open-label trial in two centres in India. Patients above the age of 16 years, with uncomplicated vivax malaria, G6PD activity of ≥ 30% of the adjusted male median (AMM) and haemoglobin levels ≥ 8 g/dL will be recruited into the study and randomised in a 1:1 ratio to receive standard schizonticidal treatment plus 7-day primaquine at 0.50 mg/kg/day or standard care with schizonticidal treatment plus 14-day primaquine at 0.25 mg/kg/day. Patients will be followed up for 6 months. The primary endpoint is the incidence risk of any P. vivax parasitaemia at 6 months. Safety outcomes include the incidence risk of severe anaemia (haemoglobin < 8 g/dL), the risk of blood transfusion, a > 25% fall in haemoglobin and an acute drop in haemoglobin of > 5 g/dL during primaquine treatment. DISCUSSION: This study will evaluate the efficacy and safety of a 7-day primaquine regimen compared to the standard 14-day regimen in India. Results from this trial are likely to directly inform national treatment guidelines. TRIAL REGISTRATION: Trial is registered on CTRI portal, Registration No: CTRI/2022/12/048283.


Subject(s)
Antimalarials , Malaria, Vivax , Adolescent , Adult , Humans , Male , Antimalarials/adverse effects , Antimalarials/therapeutic use , Hemoglobins , India , Malaria, Vivax/diagnosis , Malaria, Vivax/drug therapy , Malaria, Vivax/prevention & control , Primaquine/adverse effects , Primaquine/therapeutic use , Recurrence , Multicenter Studies as Topic , Randomized Controlled Trials as Topic
6.
Malar J ; 23(1): 50, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360708

ABSTRACT

BACKGROUND: Despite the progress made in this decade towards malaria elimination, it remains a significant public health concern in India and many other countries in South Asia and Asia Pacific region. Understanding the historical trends of malaria incidence in relation to various commodity and policy interventions and identifying the factors associated with its occurrence can inform future intervention strategies for malaria elimination goals. METHODS: This study analysed historical malaria cases in India from 1990 to 2022 to assess the annual trends and the impact of key anti-malarial interventions on malaria incidence. Factors associated with malaria incidence were identified using univariate and multivariate linear regression analyses. Generalized linear, smoothing, autoregressive integrated moving averages (ARIMA) and Holt's models were used to forecast malaria cases from 2023 to 2030. RESULTS: The reported annual malaria cases in India during 1990-2000 were 2.38 million, which dropped to 0.73 million cases annually during 2011-2022. The overall reduction from 1990 (2,018,783) to 2022 (176,522) was 91%. The key interventions of the Enhanced Malaria Control Project (EMCP), Intensified Malaria Control Project (IMCP), use of bivalent rapid diagnostic tests (RDT-Pf/Pv), artemisinin-based combination therapy (ACT), and involvement of the Accredited Social Health Activists (ASHAs) as front-line workers were found to result in the decline of malaria significantly. The ARIMA and Holt's models projected a continued decline in cases with the potential for reaching zero indigenous cases by 2027-2028. Important factors influencing malaria incidence included tribal population density, literacy rate, health infrastructure, and forested and hard-to-reach areas. CONCLUSIONS: Studies aimed at assessing the impact of major commodity and policy interventions on the incidence of disease and studies of disease forecasting will inform programmes and policymakers of steps needed during the last mile phase to achieve malaria elimination. It is proposed that these time series and disease forecasting studies should be performed periodically using granular (monthly) and meteorological data to validate predictions of prior studies and suggest any changes needed for elimination efforts at national and sub-national levels.


Subject(s)
Antimalarials , Malaria , Humans , Time Factors , Goals , Malaria/epidemiology , Malaria/prevention & control , Malaria/diagnosis , Antimalarials/therapeutic use , India/epidemiology
7.
Malar J ; 22(1): 375, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38072967

ABSTRACT

BACKGROUND: Resistance against artemisinin-based combination therapy is one of the challenges to malaria control and elimination globally. Mutations in different genes (Pfdhfr, Pfdhps, Pfk-13 and Pfmdr1) confer resistance to artesunate and sulfadoxine-pyrimethamine (AS + SP) were analysed from Mandla district, Madhya Pradesh, to assess the effectiveness of the current treatment regimen against uncomplicated Plasmodium falciparum. METHODS: Dried blood spots were collected during the active fever survey and mass screening and treatment activities as part of the Malaria Elimination Demonstration Project (MEDP) from 2019 to 2020. Isolated DNA samples were used to amplify the Pfdhfr, Pfdhps, Pfk13 and Pfmdr1 genes using nested PCR and sequenced for mutation analysis using the Sanger sequencing method. RESULTS: A total of 393 samples were subjected to PCR amplification, sequencing and sequence analysis; 199, 215, 235, and 141 samples were successfully sequenced for Pfdhfr, Pfdhps, Pfk13, Pfmdr1, respectively. Analysis revealed that the 53.3% double mutation (C59R, S108N) in Pfdhfr, 89.3% single mutation (G437A) in Pfdhps, 13.5% single mutants (N86Y), and 51.1% synonymous mutations in Pfmdr1 in the study area. Five different non-synonymous and two synonymous point mutations found in Pfk13, which were not associated to artemisinin resistance. CONCLUSION: The study has found that mutations linked to SP resistance are increasing in frequency, which may reduce the effectiveness of this drug as a future partner in artemisinin-based combinations. No evidence of mutations linked to artemisinin resistance in Pfk13 was found, suggesting that parasites are sensitive to artemisinin derivatives in the study area. These findings are a baseline for routine molecular surveillance to proactively identify the emergence and spread of artemisinin-resistant parasites.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Malaria , Humans , Plasmodium falciparum , Antimalarials/pharmacology , Antimalarials/therapeutic use , Pyrimethamine/therapeutic use , Sulfadoxine/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Malaria/drug therapy , Biomarkers , Drug Resistance/genetics , India , Drug Combinations , Malaria, Falciparum/parasitology , Protozoan Proteins/genetics , Protozoan Proteins/therapeutic use
8.
BMJ Glob Health ; 8(12)2023 12 20.
Article in English | MEDLINE | ID: mdl-38123228

ABSTRACT

BACKGROUND: The optimal dosing of primaquine to prevent relapsing Plasmodium vivax malaria in South Asia remains unclear. We investigated the efficacy and safety of different primaquine regimens to prevent P. vivax relapse. METHODS: A systematic review identified P. vivax efficacy studies from South Asia published between 1 January 2000 and 23 August 2021. In a one-stage meta-analysis of available individual patient data, the cumulative risks of P. vivax recurrence at day 42 and 180 were assessed by primaquine total mg/kg dose and duration. The risk of recurrence by day 180 was also determined in a two-stage meta-analysis. Patients with a >25% drop in haemoglobin to <70 g/L, or an absolute drop of >50 g/L between days 1 and 14 were categorised by daily mg/kg primaquine dose. RESULTS: In 791 patients from 7 studies in the one-stage meta-analysis, the day 180 cumulative risk of recurrence was 61.1% (95% CI 42.2% to 80.4%; 201 patients; 25 recurrences) after treatment without primaquine, 28.8% (95% CI 8.2% to 74.1%; 398 patients; 4 recurrences) following low total (2 to <5 mg/kg) and 0% (96 patients; 0 recurrences) following high total dose primaquine (≥5 mg/kg). In the subsequent two-stage meta-analysis of nine studies (3529 patients), the pooled proportions of P. vivax recurrences by day 180 were 12.1% (95% CI 7.7% to 17.2%), 2.3% (95% CI 0.3% to 5.4%) and 0.7% (95% CI 0% to 6.1%), respectively. No patients had a >25% drop in haemoglobin to <70 g/L. CONCLUSIONS: Primaquine treatment led to a marked decrease in P. vivax recurrences following low (~3.5 mg/kg) and high (~7 mg/kg) total doses, with no reported severe haemolytic events. PROSPERO REGISTRATION NUMBER: CRD42022313730.


Subject(s)
Antimalarials , Malaria, Vivax , Humans , Primaquine/therapeutic use , Primaquine/adverse effects , Malaria, Vivax/drug therapy , Malaria, Vivax/chemically induced , Malaria, Vivax/prevention & control , Antimalarials/adverse effects , Plasmodium vivax , Recurrence , Asia, Southern , Hemoglobins/therapeutic use
9.
PLOS Glob Public Health ; 3(1): e0001292, 2023.
Article in English | MEDLINE | ID: mdl-36962890

ABSTRACT

India has committed to zero indigenous malaria cases by 2027 and elimination by 2030. Of 28 states and 8 union territories of India, eleven states were targeted to reach the elimination phase by 2020. However, state-level epidemiology indicates that several states of India may not be on the optimum track, and few goals set in National Framework for Malaria Elimination (NFME) for 2020 remain to be addressed. Therefore, tracking the current progress of malaria elimination in India at the district level, and identifying districts that are off track is important in understanding possible shortfalls to malaria elimination. Annual malaria case data from 2017-20 of 686 districts of India were obtained from the National Center for Vector-Borne Diseases Control (NCVBDC) and analysed to evaluate the performance of districts to achieve zero case status by 2027. A district's performance was evaluated by calculating the annual percentage change in the total number of malaria cases for the years 2018, 2019 and 2020 considering the previous year as a base year. The mean, median and maximum of these annual changes were then used to project the number of malaria cases in 2027. Based on these, districts were classified into four groups: 1) districts that are expected to reach zero case status by 2027, 2) districts that would achieve zero case status between 2028 and 2030, 3) districts that would arrive at zero case status after 2030, and 4) districts where malaria cases are on the rise. Analysis suggest, a cohort of fifteen districts require urgent modification or improvement in their malaria control strategies by identifying foci of infection and customizing interventions. They may also require new interventional tools that are being developed recently so that malaria case reduction over the years may be increased.

10.
Malar J ; 22(1): 45, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36747302

ABSTRACT

BACKGROUND: Compared to 2017, India achieved a significant reduction in malaria cases in 2020. Madhya Pradesh (MP) is a tribal dominated state of India with history of high malaria burden in some districts. District Mandla of MP state showed a considerable decline in malaria cases between 2000 and 2013, except in 2007. Subsequently, a resurgence of malaria cases was observed during 2014 and 2015. The Malaria Elimination Demonstration Project (MEDP) was launched in 2017 in Mandla with the goal to achieve zero indigenous malaria cases. This project used: (1) active surveillance and case management using T4 (Track fever, Test fever, Treat patient, and Track patient); (2) vector control using indoor residual sprays and long-lasting insecticidal nets; (3) information education communication and behaviour change communication; and (4) regular monitoring and evaluation with an emphasis on operational and management accountability. This study has investigated malaria prevalence trends from 2008 to 2020, and has predicted trends for the next 5 years for Mandla and its bordering districts. METHODS: The malaria prevalence data of the district Mandla for the period of January 2008 to August 2017 was obtained from District Malaria Office (DMO) Mandla and data for the period of September 2017 to December 2020 was taken from MEDP data repository. Further, the malaria prevalence data for the period of January 2008 to December 2020 was collected from DMOs of the neighbouring districts of Mandla. A univariate time series and forecast analysis was performed using seasonal autoregressive integrated moving average model. FINDINGS: Malaria prevalence in Mandla showed a sharp decline [- 87% (95% CI - 90%, - 84%)] from 2017 to 2020. The malaria forecast for Mandla predicts zero cases in the next 5 years (2021-2025), provided current interventions are sustained. By contrast, the model has forecasted a risk of resurgence of malaria in other districts in MP (Balaghat, Dindori, Jabalpur, Seoni, and Kawardha) that were not the part of MEDP. CONCLUSION: The interventions deployed as part of MEDP have resulted in a sustainable zero indigenous malaria cases in Mandla. Use of similar strategies in neighbouring and other malaria-endemic districts in India could achieve similar results. However, without adding extra cost to the existing intervention, sincere efforts are needed to sustain these interventions and their impact using accountability framework, data transparency, and programme ownership from state to district level.


Subject(s)
Malaria , Humans , Time Factors , Malaria/epidemiology , Malaria/prevention & control , India/epidemiology , Research Design , Case Management
11.
Malar J ; 22(1): 62, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36810077

ABSTRACT

BACKGROUND: Global malaria cases rose by 14 million, and deaths by 69,000, in 2020. In India, a 46% decline has been reported between 2020 and 2019. In 2017, the Malaria Elimination Demonstration Project conducted a needs-assessment of the Accredited Social Health Activists (ASHAs) of Mandla district. This survey revealed the inadequate level of knowledge in malaria diagnosis and treatment. Subsequently, a training programme was launched for enhancing malaria-related knowledge of ASHAs. The present study was conducted in 2021 to evaluate the impact of training on malaria-related knowledge and practices of ASHAs in Mandla. This assessment was also done in two adjoining districts: Balaghat and Dindori. METHODS: A cross-sectional survey using a structured questionnaire was administered to ASHAs to measure their knowledge and practices related to malaria etiology, prevention, diagnosis, and treatment. A comparison of information collected from these three districts was performed using simple descriptive statistics, comparison of means and multivariate logistic regression analysis. RESULTS: Significant improvement was noted amongst ASHAs of district Mandla between 2017 (baseline) and 2021 (endline) in knowledge related to malaria transmission, preventive measures, adherence to the national drug policy, diagnosis using rapid diagnostic tests, and identification of age group-specific, colour-coded artemisinin combination therapy blister packs (p < 0.05). The multivariate logistic regression analysis revealed that odds of Mandla baseline was 0.39, 0.48, 0.34, and 0.07 times lower for malaria-related knowledge on disease etiology, prevention, diagnosis, and treatment, respectively (p < 0.001). Further, participants in districts Balaghat and Dindori showed significantly lower odds for knowledge (p < 0.001) and treatment practices (p < 0.01) compared to Mandla endline. Education, attended training, having a malaria learner's guide, and minimum 10 years' work experience were potential predictors for good treatment practices. CONCLUSION: The findings of the study unequivocally establishes significant improvement in overall malaria-related knowledge and practices of ASHAs in Mandla as a result of periodic training and capacity building efforts. The study suggests that learnings from Mandla district could be helpful in improving level of knowledge and practices among frontline health workers.


Subject(s)
Malaria , Humans , Cross-Sectional Studies , India , Community Health Workers , Surveys and Questionnaires
12.
IDCases ; 31: e01653, 2023.
Article in English | MEDLINE | ID: mdl-36589765

ABSTRACT

A young male returned from the Democratic Republic of the Congo (DRC) to India after four months during his official work. Within a week of his arrival, he developed a high-grade fever with nausea and was hospitalized in a private hospital in New Delhi. He was diagnosed with malaria, treated with an artesunate injection as antimalarial, and discharged on day 5th from the hospital. A week later, he was diagnosed with malaria and dengue positive at ICMR-National Institute of Malaria Research, New Delhi. Artesunate with sulphadoxine and pyrimethamine (AS+SP) was administered following India's malaria treatment policy. However, high-grade fever, along with the asexual stage of the P. falciparum parasite, was observed within 28 days of treatment with AS+SP, signifying late treatment failure (LTF). Further, the molecular analysis from both the days of episodes was analyzed using genomic DNA from dried blood spots, revealing resistance to sulphadoxine-pyrimethamine with mutations at codons pfdhfr 51I, pfdhfr 59 R, pfdhfr 108 N, pfdhps 437 A, pfdhps 581 G. No functional mutation associated was found in pfKelch13, but interestingly the sensitive codons to chloroquine (CQ) (wild type pfcrtK76 and pfmdrN86) revealed the probably reversible CQ sensitivity in the sample from DRC.

13.
BMJ Glob Health ; 8(1)2023 01.
Article in English | MEDLINE | ID: mdl-36653068

ABSTRACT

INTRODUCTION: Malaria and malnutrition are key public health challenges in India. However, the relationship between them is poorly understood. Here, we aimed to elucidate the potential interactions between the two health conditions by identifying the areas of their spatial overlap. METHODS: We have analysed the district-wise undernutrition and malaria data of 638 districts of India across 28 states and 8 union territories. Data on malnutrition parameters viz. stunting, wasting, underweight and anaemia, sourced from the fourth National Family Health Survey (2015-2016), and malaria Annual Parasite Index (API) data of the same year (i.e, 2015), sourced from National Center of Vector Borne Diseases Control were analysed using local Moran's I Index and logistic regression. RESULTS: Among all the malnutrition parameters, we found underweight in children and anaemia in men to co-occur with malaria in the districts of Chhattisgarh, Jharkhand, Madhya Pradesh and Odisha. Further, districts with more than 36% underweight children (OR (95% CI): 2.31 (1.53 to 3.48)) and/or more than 23.6% male population with anaemia (OR (95% CI): 2.06 (1.37 to 3.11)) had higher odds of being malaria endemic districts (ie, Annual Parasite Index >1). CONCLUSION: Malaria and malnutrition co-occur in the malaria-endemic parts of India. The high prevalence of undernutrition in children and anaemia among men may contribute to malaria endemicity in a particular region. Therefore, future research should be prioritised to generate data on the individual level. Further, malaria control interventions could be tailored to integrate nutrition programmes to disrupt indigenous malaria transmission in endemic districts.


Subject(s)
Anemia , Malaria , Malnutrition , Child , Humans , Male , Female , Thinness/epidemiology , Malaria/epidemiology , Malnutrition/epidemiology , Anemia/epidemiology , Anemia/parasitology , India/epidemiology
14.
Front Public Health ; 11: 1303095, 2023.
Article in English | MEDLINE | ID: mdl-38303961

ABSTRACT

Malaria poses a major public health challenge in the Asia Pacific. Malaria Elimination Demonstration Project was conducted as a public-private partnership initiative in Mandla between State government, ICMR, and FDEC India. The project employed controls for efficient operational and management decisions. IEC campaigns found crucial in schools and communities. Capacity building of local workers emphasized for better diagnosis and treatment. SOCH mobile app launched for complete digitalization. Better supervision for Indoor Residual Sprays and optimized Long Lasting Insecticidal Nets distribution. Significant malaria cases reduction in Mandla. Insights from MEDP crucial for malaria elimination strategies in other endemic regions of the Asia Pacific.


Subject(s)
Insecticides , Malaria , Humans , Asia/epidemiology , India , Malaria/prevention & control , Malaria/epidemiology , Public Health
15.
Glob Pediatr ; 6: None, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38440360

ABSTRACT

Purpose: The pediatric population, especially under-five children, is highly susceptible to malaria and accounts for 76 % of global malaria deaths according to the World Malaria Report 2022. The purpose of this manuscript is to discuss the various factors involved in the susceptibility of the pediatric population to Malaria and the importance of this age group for malaria elimination. Methodology: Data on pediatric malaria epidemiology that includes prevalence, risk factors, immune factors, socioeconomic factors, control methods, etc. were extracted from published literature using PubMed and Google Scholar. This data was further correlated with malaria incidence data from the World Health Organization (WHO) and the National Center for Vector Borne Diseases Control (NCVBDC). Results: The younger age group is vulnerable to severe malaria due to an immature immune system. The risk of infection and clinical disease increases after the waning of maternal immunity. In the initial years of life, the developing brain is more susceptible to malaria infection and its after-effects. The pediatric population may act as a malaria transmission reservoir due to parasite density and asymptomatic infections. WHO recommended RTS,S/AS01 has limitations and may not be applicable in all settings to propel malaria elimination. Conclusion: The diagnosis of malaria is based on clinical suspicion and confirmed with microscopy and/or rapid diagnostic testing. The school-age pediatric population serves as a transmission reservoir in the form of asymptomatic malaria since they have acquired some immunity due to exposure in early childhood. Targeting the hidden reservoir in the pediatric population and protecting this vulnerable group will be essential for malaria elimination from the countries targeting elimination.

16.
Malar J ; 21(1): 368, 2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36463136

ABSTRACT

BACKGROUND: The utilization and impact of the healthcare services depend on the perceived quality, appropriateness, ease of availability, and cost of the services. This study aimed to understand the community's perception of the quality of healthcare services delivered as part of the Malaria Elimination Demonstration Project (MEDP), Mandla, Madhya Pradesh, India. METHODS: The study used qualitative techniques to analyze the community perceptions that emerged from the participants' narratives during the Focus Group Discussions (FGDs) and in-depth Interviews with Key Informants (IKIs) on the promptness and quality of healthcare service delivery, the behaviour of MEDP staff, Information, Education and Communication, and Behavioural Change Communication activities, coordination with community members and other health personnel, and capacity building of healthcare workers and the community. RESULTS: 36 FGDs and 63 IKIs with 419 respondents were conducted in nine blocks of district Mandla. Overall, 97% to 100% of beneficiaries associated MEDP with regularity and prompt service delivery, availability of diagnostics and drugs, friendly behaviour, good coordination, and community mobilization to enhance treatment-seeking behaviour. CONCLUSIONS: The study's findings highlighted the importance of building and maintaining the community's participation and promoting the demand for optimal utilization of healthcare services inside the village to promptly achieve the malaria elimination goal.


Subject(s)
Health Services , Malaria , Humans , Qualitative Research , Focus Groups , Malaria/prevention & control , India
17.
Malar J ; 21(1): 395, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36575544

ABSTRACT

BACKGROUND: Mass screening and treatment (MSaT) aims at reducing the spread of malaria in communities by identifying and treating infected persons regardless of the symptoms. This study was conducted to identify and treat asymptomatic cases using MSaT approaches in the community. METHODS: Three rounds of MSaT using cluster combination approaches were carried out during September 2018 to December 2019 to identify and treat asymptomatic malaria cases in the community. All individuals who were present in the household were screened using RDT irrespective of malaria related symptoms. Simultaneously thick and thin blood smear and blood spot were collected for further analysis using microscopy and diagnostic PCR done in a subset of the samples. RESULTS: Logistic regression analysis revealed that asymptomatic malaria cases significantly less among the older age groups compared with < 5 years children (OR ranged between 0.52 and 0.61; p < 0.05), lowest in cluster 4 (OR = 0.01; p < 0.0001); during third round of MSaT survey (OR = 0.11; p < 0.0001) and significantly higher in moderate to high endemic areas (OR = 88.30; p < 0.0001). CONCLUSION: Over the three rounds of MSaT, the number of asymptomatic cases were significantly less in the older age groups, and during third round. Similarly, the asymptomatic cases were significantly less in the low endemic area with API < 1 (cluster four). Therefore, the malaria elimination programme may consider the MSaT strategy to identify asymptomatic cases that would be otherwise missed by routine fever based surveillance. This MSaT strategy would help accomplish the malaria elimination goal in an expedited manner.


Subject(s)
Malaria, Falciparum , Malaria , Child , Humans , Aged , Malaria, Falciparum/epidemiology , Plasmodium falciparum , Malaria/diagnosis , Malaria/drug therapy , Malaria/prevention & control , Mass Screening , Polymerase Chain Reaction , Asymptomatic Infections/epidemiology , Prevalence
18.
Malar J ; 21(1): 341, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36397072

ABSTRACT

BACKGROUND: Low-density malaria infections (LDMI) are defined as infections that are missed by the rapid diagnostic test (RDT) and/or microscopy which can lead to continued transmission and poses a challenge in malaria elimination efforts. This study was conducted to investigate the prevalence of LDMI in febrile cases using species-specific nested Polymerase Chain Reaction (PCR) tests in the Malaria Elimination Demonstration Project, where routine diagnosis was conducted using RDT. METHODS: Every 10th fever case from a cross-sectional community based fever surveillance was tested with RDT, microscopy and nested PCR. Parasite DNA was isolated from the filter paper using Chelex based method. Molecular diagnosis by nested PCR was performed targeting 18SrRNA gene for Plasmodium species. RESULTS: The prevalence of malaria was 2.50% (436/17405) diagnosed by PCR, 1.13% (196/17405) by RDT, and 0.68% (118/ 17,405) by microscopy. Amongst 17,405 febrile samples, the prevalence of LDMI was 1.51% (263/17405) (95% CI 1.33-1.70), which were missed by conventional methods. Logistic regression analysis revealed that illness during summer season [OR = 1.90 (p < 0.05)] and cases screened within three days of febrile illness [OR = 5.27 (p < 0.001)] were the statistically significant predictors of LDMI. CONCLUSION: The prevalence of malaria among febrile cases using PCR was 2.50% (436/17405) as compared to 1.13% (196/17405) by RDT. Higher number of the LDMI cases were found in subjects with ≤ 3 days mean duration of reported fever, which was statistically significant (p < 0.001). This observation suggests that an early detection of malaria with a more sensitive diagnostic method or repeat testing of the all negative cases may be useful for curtailing malaria transmission. Therefore, malaria elimination programme would benefit from using more sensitive and specific diagnostic methods, such as PCR.


Subject(s)
Malaria , Plasmodium falciparum , Humans , Plasmodium falciparum/genetics , Cross-Sectional Studies , Malaria/diagnosis , Malaria/epidemiology , Malaria/parasitology , Polymerase Chain Reaction/methods , Fever/epidemiology , India/epidemiology
19.
Front Immunol ; 13: 1005332, 2022.
Article in English | MEDLINE | ID: mdl-36211427

ABSTRACT

Plasmodium falciparum Cysteine-Rich Protective Antigen (CyRPA) is an essential, highly conserved merozoite antigen that forms an important multi-protein complex (RH5/Ripr/CyRPA) necessary for erythrocyte invasion. CyRPA is a promising blood-stage vaccine target that has been shown to elicit potent strain-transcending parasite neutralizing antibodies. Recently, we demonstrated that naturally acquired immune anti-CyRPA antibodies are invasion-inhibitory and therefore a correlate of protection against malaria. Here, we describe a process for the large-scale production of tag-free CyRPA vaccine in E. coli and demonstrate its parasite neutralizing efficacy with commonly used adjuvants. CyRPA was purified from inclusion bodies using a one-step purification method with high purity (>90%). Biochemical and biophysical characterization showed that the purified tag-free CyRPA interacted with RH5, readily detected by a conformation-specific CyRPA monoclonal antibody and recognized by sera from malaria infected individuals thus indicating that the recombinant antigen was correctly folded and retained its native conformation. Tag-free CyRPA formulated with Freund's adjuvant elicited highly potent parasite neutralizing antibodies achieving inhibition of >90% across diverse parasite strains. Importantly, we identified tag-free CyRPA/Alhydrogel formulation as most effective in inducing a highly immunogenic antibody response that exhibited efficacious, cross-strain in vitro parasite neutralization achieving ~80% at 10 mg/ml. Further, CyRPA/Alhydrogel vaccine induced anti-parasite cytokine response in mice. In summary, our study provides a simple, scalable, cost-effective process for the production of tag-free CyRPA that in combination with human-compatible adjuvant induces efficacious humoral and cell-mediated immune response.


Subject(s)
Malaria Vaccines , Malaria , Aluminum Hydroxide , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Protozoan , Cysteine , Cytokines , Escherichia coli , Freund's Adjuvant , Humans , Mice , Plasmodium falciparum
20.
Am J Trop Med Hyg ; 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35130488

ABSTRACT

Despite commendable progress in the control of malaria in India and other countries, there are hidden reservoirs of parasites in human hosts that continually feed malaria transmission. Submicroscopic infections are known to be a significant proportion in low-endemic settings like India and these infections do possess transmission potential. Hence, these reservoirs of infection add to the existing roadblocks for malaria elimination. It is crucial that this submerged burden of malaria is detected and treated to curtail further transmission. The currently used diagnostic tools including the so-called "gold standard" of microscopy are incapable of detecting these submicroscopic infections and thus are suboptimal. It is an opportune time to usher in more sensitive molecular tools like polymerase chain reaction (PCR) for routine diagnosis at all levels of healthcare as an additional diagnostic tool in routine settings. Polymerase chain reaction assays have been developed into user-friendly formats for field diagnostics and are near point of care. In India, because of the COVID-19 pandemic, these are being used rampantly across the country. The facilities created for COVID-19 diagnosis can easily be co-opted and harnessed for malaria diagnosis to augment surveillance by the inclusion of molecular techniques like PCR in the routine national malaria control program.

SELECTION OF CITATIONS
SEARCH DETAIL
...