Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Accid Anal Prev ; 179: 106882, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36356509

ABSTRACT

Right-turn crashes (or left-turn crashes for the US or similar countries) represent over 40 % of signalized intersection crashes in Queensland, Australia. Protected right-turn phasings are a widely used countermeasure for right-turn crashes, but the research findings on their effects across different crash types and intersection types are not consistent. Methodologically, the Empirical Bayes and Full Bayes techniques are generally applied for before-after evaluations, but the inclusion of heterogeneous models within these techniques has not been considered much. Addressing these research gaps, the objective of this study is to evaluate the effectiveness of protected right-turn signal phasings at signalized intersections employing heterogeneous count data models with the Empirical Bayes and Full Bayes techniques. In particular, the Empirical Bayes approach based on random parameters Poisson-Gamma models (simulation-based Empirical Bayes), and the Full Bayes approach based on random parameters Poisson-Lognormal intervention models (simulation-based Full Bayes) are applied. A total of 69 Cross intersections (with ten treated sites) and 47 T intersections (with six treated sites) from Southeast Queensland in Australia were included in the analysis to estimate the effects of protected right-turn signal phasings on various crash types. Results show that the change of signal phasing from a permissive right-turn phasing to the protected right-turn phasing at cross and T intersections reduces about 87 % and 91 % of right-turn crashes, respectively. In addition, the effect of protected right-turn phasings on rear-end crashes was not significant. The heterogenous count data models significantly address extra Poisson variation, leading to efficient safety estimates in both simulation-based Empirical Bayes and simulation-based Full Bayes approaches. This study demonstrates the importance of accounting for unobserved heterogeneity for the before-after evaluation of engineering countermeasures.


Subject(s)
Accidents, Traffic , Evidence Gaps , Humans , Bayes Theorem , Accidents, Traffic/prevention & control , Australia , Queensland
2.
Accid Anal Prev ; 170: 106644, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35367897

ABSTRACT

Traffic conflict techniques represent the state-of-the-art for road safety assessments. However, the lack of research on transferability of conflict-based crash risk models, which refers to applying the developed crash risk estimation models to a set of external sites, can reduce their appeal for large-scale traffic safety evaluations. Therefore, this study investigates the transferability of multivariate peak-over threshold models for estimating crash frequency-by-severity. In particular, the study proposes two transferability approaches: (i) an uncalibrated approach involving a direct application of the uncalibrated base model to the target sites and (ii) a threshold calibration approach involving calibration of conflict thresholds of the conflict indicators. In the latter approach, the conflict thresholds of the Modified Time-To-Collision (MTTC) and Delta-V indicators were calibrated using local data from the target sites. Finally, the two transferability approaches were compared with a complete re-estimation approach where all the model parameters were estimated using local data. All three approaches were tested for a target set of signalized intersections in Southeast Queensland, Australia. Traffic movements at the target intersections were observed using video cameras for two days (12 h each day). The road user trajectories and rear-end conflicts were extracted using an automated artificial intelligence-based algorithm utilizing state-of-the-art Computer Vision methods. The base models developed in an earlier study were then transferred to the target sites using the two transferability approaches and the local data from the target sites. Results show that the threshold calibration approach provides the most accurate and precise predictions of crash frequency-by-severity for target sites. Thus, for peak-over threshold models, the threshold parameter is the most important, and its calibration improves the performance of the base models. The complete re-estimation of models for individual target sites yields inferior fits and less precise crash estimates than the two transferability approaches since they utilize fewer traffic conflict extremes in their development than the larger dataset utilized in base model development. Therefore, the study results can significantly advance the applicability of traffic conflict models for crash risk estimation at transport facilities.


Subject(s)
Accidents, Traffic , Artificial Intelligence , Accidents, Traffic/prevention & control , Australia , Calibration , Environment Design , Humans , Models, Statistical , Safety
3.
Accid Anal Prev ; 153: 106016, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33582529

ABSTRACT

Safety assessment of road sections and networks have historically relied on police-reported crash data. These data have several noteworthy and significant shortcomings, including under-reporting, subjectivism, post hoc assessment of crash causes and contributing factors, limited behavioural information, and omitted potential important crash-related factors resulting in an omitted variable bias. Moreover, crashes are relatively rare events and require long observation periods to justify expenditures. The rarity of crashes leads to a moral dilemma-we must wait for sufficient crashes to accrue at a site-some involving injuries and even death-to then justify improvements to prevent crashes. The more quickly the profession can end its reliance on crashes to assess road safety, the better. Surrogate safety assessment methodologies, in contrast, are proactive in design, do not rely on crashes, and require shorter observation timeframes in which to formulate reliable safety assessments. Although surrogate safety assessment methodologies have been developed and assessed over the past 50 years, an overarching and unifying framework does not exist to date. A unifying framework will help to contextualize the role of various methodological developments and begin a productive discussion in the literature about how the various pieces do or should fit together to understand road user risk better. This paper aims to fill this gap by thoroughly mapping traffic conflicts and surrogate safety methodologies. A total of 549 studies were meticulously reviewed to achieve this aim of developing a unifying framework. The resulting framework provides a consolidated and up-to-date summary of surrogate safety assessment methodologies and conflict measures and metrics. Further work is needed to advance surrogate safety methodologies. Critical research needs to include identifying a comprehensive and reliable set of surrogate measures for risk assessment, establishing rigorous relationships between conflicts and crashes, developing ways to capture road user behaviours into surrogate-based safety assessment, and integrating crash severity measures into risk estimation.


Subject(s)
Accidents, Traffic , Environment Design , Accidents, Traffic/prevention & control , Humans , Risk Assessment , Safety
4.
Public Transp ; 13(2): 395-427, 2021.
Article in English | MEDLINE | ID: mdl-38624534

ABSTRACT

It is important to evaluate the quality of service (QoS) of bus rapid transit (BRT) station platform operation. Passenger-specific area (PSA) is used as a QoS measure which is determined by considering passenger activities separately. As passengers perform various activities on the same platform space, there is a need to evaluate BRT platform QoS by considering the activities collectively. When evaluating transit station platforms, many researchers calculated PSA for the whole platform area, while very few researchers highlighted the importance of evaluating the platform as small, partitioned areas. By considering these findings and gaps in the literature, this study evaluates QoS of the platform on a cell by cell basis using PSA. We use time-space analysis and passenger-minutes of each activity to develop a methodology to determine PSA, by considering stationary passengers, circulating passengers, and passengers overall. To evaluate platform QoS, we define threshold service levels using passenger-minutes of activities and Fruin's QoS criteria. For the case study BRT station, we find that PSA varies significantly between platform cells. It is evident from the results that it is important to identify highly congested areas in the platform and apply measures to improve platform QoS.

SELECTION OF CITATIONS
SEARCH DETAIL