Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Transl Med ; 22(1): 370, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637842

ABSTRACT

JAK-STAT signalling pathway inhibitors have emerged as promising therapeutic agents for the treatment of hair loss. Among different JAK isoforms, JAK3 has become an ideal target for drug discovery because it only regulates a narrow spectrum of γc cytokines. Here, we report the discovery of MJ04, a novel and highly selective 3-pyrimidinylazaindole based JAK3 inhibitor, as a potential hair growth promoter with an IC50 of 2.03 nM. During in vivo efficacy assays, topical application of MJ04 on DHT-challenged AGA and athymic nude mice resulted in early onset of hair regrowth. Furthermore, MJ04 significantly promoted the growth of human hair follicles under ex-vivo conditions. MJ04 exhibited a reasonably good pharmacokinetic profile and demonstrated a favourable safety profile under in vivo and in vitro conditions. Taken together, we report MJ04 as a highly potent and selective JAK3 inhibitor that exhibits overall properties suitable for topical drug development and advancement to human clinical trials.


Subject(s)
Drug Development , Hair , Mice , Animals , Humans , Mice, Nude , Drug Discovery , Janus Kinase 3
3.
Front Aging Neurosci ; 14: 977411, 2022.
Article in English | MEDLINE | ID: mdl-36158539

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder that causes progressive loss of cognitive functions like thinking, memory, reasoning, behavioral abilities, and social skills thus affecting the ability of a person to perform normal daily functions independently. There is no definitive cure for this disease, and treatment options available for the management of the disease are not very effective as well. Based on histopathology, AD is characterized by the accumulation of insoluble deposits of amyloid beta (Aß) plaques and neurofibrillary tangles (NFTs). Although several molecular events contribute to the formation of these insoluble deposits, the aberrant post-translational modifications (PTMs) of AD-related proteins (like APP, Aß, tau, and BACE1) are also known to be involved in the onset and progression of this disease. However, early diagnosis of the disease as well as the development of effective therapeutic approaches is impeded by lack of proper clinical biomarkers. In this review, we summarized the current status and clinical relevance of biomarkers from cerebrospinal fluid (CSF), blood and extracellular vesicles involved in onset and progression of AD. Moreover, we highlight the effects of several PTMs on the AD-related proteins, and provide an insight how these modifications impact the structure and function of proteins leading to AD pathology. Finally, for disease-modifying therapeutics, novel approaches, and targets are discussed for the successful treatment and management of AD.

4.
Cell Signal ; 79: 109885, 2021 03.
Article in English | MEDLINE | ID: mdl-33340661

ABSTRACT

EGFRis a transmembrane receptor tyrosine kinase involved in regulating cell proliferation, differentiation and survival. EGFR is actively pursued as a therapeutic target because its aberrant expression or activity has been reported in several cancers. Several studies have reported the nuclear localization of the EGFR in various cell types, however, its exact nuclear functions are not clear yet. In this study, we have generated GFP fusion constructs of EGFR and its mutants to analyze their subcellular localizationin normal and cancer cells and impact of its sub-cellular location on its various activities using immunoblotting, confocal microscopy, reporter assays, loss-of-function EGFR mutants, and EGFR specific small molecule inhibitors. We show that EGFR is involved in modulating TCF dependent ß-catenin transcriptional activity in HepG2 cells in a similar fashion as IGF1R tyrosine kinase. Moreover, we show that cytoplasmic and nuclear functions are two independent activities of EGFR.


Subject(s)
Liver Neoplasms/metabolism , Neoplasm Proteins/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism , HEK293 Cells , Hep G2 Cells , Humans , Liver Neoplasms/genetics , Neoplasm Proteins/genetics , beta Catenin/genetics
5.
Growth Horm IGF Res ; 55: 101343, 2020 12.
Article in English | MEDLINE | ID: mdl-32877816

ABSTRACT

IR and insulin-like growth factor-1 receptor (IGF-1R) share high degree of sequence and structural similarity that hinders the development of anticancer drugs targeting IGF1R, which is dysregulated in many cancers. Although IR and IGF1R mediate their activities through similar signalling pathways, yet they show different physiological effects. The exact molecular mechanism(s) how IR and IGF1R exert their distinct functions remain largely unknown. Here, we performed in silico analysis and generated GFP-fusion proteins of wild type IR and its K1079R mutant to analyze their subcellular localization, cytoplasmic and nuclear activities in comparison to IGF1R and its K1055R mutant. We showed that, like K1055R mutation in IGF1R, K1079R mutation does not impede the subcellular localization and nuclear activities of IR. Although K1079R mutation significantly decreases the kinase activity of IR but not as much as K1055R mutation, which was seen to drastically reduce the kinase activity of IGF1R. Moreover, K1079 residue in IR is seen to be sitting in a pocket which is different than the allosteric inhibitor binding pocket present in its homologue (IGF1R). This is for the first time such a study has been conducted to identify structural differences between these receptors that could be exploited for designing small molecule allosteric inhibitor(s) of IGF1R as novel anti-cancer drugs.


Subject(s)
Antigens, CD/chemistry , Antineoplastic Agents/chemistry , Mutation , Receptor, IGF Type 1/chemistry , Receptor, Insulin/chemistry , Small Molecule Libraries/chemistry , Allosteric Regulation , Amino Acid Sequence , Antigens, CD/genetics , Antineoplastic Agents/pharmacology , Computer Simulation , Drug Evaluation, Preclinical , Humans , Prognosis , Protein Conformation , Receptor, IGF Type 1/genetics , Receptor, Insulin/genetics , Sequence Homology , Signal Transduction , Small Molecule Libraries/pharmacology
6.
Cancer Chemother Pharmacol ; 84(3): 551-559, 2019 09.
Article in English | MEDLINE | ID: mdl-31129716

ABSTRACT

PURPOSE: Despite the fact that hyper-activation of Wnt/ß-catenin signaling pathway has been seen in many cancers, including liver, colorectal and lung carcinoma, no small molecule inhibitors are available that specifically target this pathway. In this study, we analyzed the impact of dinactin (DA), an antibiotic ionophore produced by Streptomyces species, as an effective small molecule targeting Wnt/ß-catenin signaling pathway in cancer cells. METHODS: We performed MTT assays to investigate cell viability and proliferation after exposure to small molecules. Protein expression analysis was carried out by western blotting. Top-Flash reporter assays were used to score for ß-catenin signaling and cell cycle analysis was carried out by flow cytometry. RESULTS: In the first set of experiments, DA was seen to selectively inhibit the proliferation of HCT-116 and HepG2 cancer cells, unlike HEK-293 cells (a low tumorigenic cell line), in apoptosis-independent manner. Further, DA was seen to block the G1/S progression and decrease the expression of cyclin D1 in cancer cells. Since cyclin D1 is the downstream target gene of Wnt/ß-catenin signaling, we examined the impact of DA on TCF-dependent ß-catenin activity using Top-Flash reporter assay. Interestingly, DA significantly decreased Top-Flash activity at lower nano-molar concentrations when compared with salinomycin in HCT-116 and HepG2 cells. CONCLUSION: We report the identification of dinactin as a natural product-based small molecule that effectively blocks the Wnt/ß-catenin signaling pathway in cancer cells at nano-molar concentration. We anticipate that DA could be developed as a novel drug for anti-cancer therapy and for the management of neuropathic pain.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Macrolides/pharmacology , Neoplasms/drug therapy , Small Molecule Libraries/pharmacology , Wnt1 Protein/metabolism , beta Catenin/metabolism , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Proliferation/drug effects , HCT116 Cells , Hep G2 Cells , Humans , Neoplasms/pathology , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Wnt1 Protein/genetics , beta Catenin/genetics
7.
Bioorg Med Chem Lett ; 29(9): 1043-1046, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30871771

ABSTRACT

Neuropathic pain is a debilitating form of treatment-resistant chronic pain caused by damage to the nervous system. Cannabinoids have been known for suppressing neuropathic pain by modulating the endo cannabinoid system. Since the canonical Wnt/ß-catenin signaling has recently been implicated in pain sensation, we investigated the impact of major cannabinoids (1-6) from the leaves of Cannabis sativa and an epoxy derivative of compound 2, here upon referred to as 2a, on modulating Wnt/ß-catenin signaling pathway. The results presented in this study show that compound 1, 2 and 2a exhibited potent inhibitory activity against Wnt/ß-catenin pathway in a dose-dependent manner. Compound 2a was seen to inhibit this pathway at slightly lower concentrations than its parent molecule 2, under similar conditions. Taken together, compound 1, 2 and 2a, by virtue of their inhibition of Wnt/ß-catenin signaling pathway, could be developed as effective neuroprotective agents for the management of neuropathic pain.


Subject(s)
Cannabinoids/chemistry , Wnt Signaling Pathway/drug effects , Animals , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Cannabis/chemistry , Cannabis/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Neuralgia/drug therapy , Neuralgia/pathology , Plant Leaves/chemistry , Plant Leaves/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...