Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Funct Biomater ; 15(4)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38667545

ABSTRACT

Nerve guidance conduits for peripheral nerve injuries can be improved using bioactive materials such as magnesium (Mg) and its alloys, which could provide both structural and trophic support. Therefore, we investigated whether exposure to Mg and Mg-1.6wt%Li thin films (Mg/Mg-1.6Li) would alter acute Schwann cell responses to injury. Using the RT4-D6P2T Schwannoma cell line (SCs), we tested extracts from freeze-killed cells (FKC) and nerves (FKN) as in vitro injury stimulants. Both FKC and FKN induced SC release of the macrophage chemoattractant protein 1 (MCP-1), a marker of the repair SC phenotype after injury. Next, FKC-stimulated cells exposed to Mg/Mg-1.6Li reduced MCP-1 release by 30%, suggesting that these materials could have anti-inflammatory effects. Exposing FKC-treated cells to Mg/Mg-1.6Li reduced the gene expression of the nerve growth factor (NGF), glial cell line-derived neurotrophic factor (GDNF), and myelin protein zero (MPZ), but not the p75 neurotrophin receptor. In the absence of FKC, Mg/Mg-1.6Li treatment increased the expression of NGF, p75, and MPZ, which can be beneficial to nerve regeneration. Thus, the presence of Mg can differentially alter SCs, depending on the microenvironment. These results demonstrate the applicability of this in vitro nerve injury model, and that Mg has wide-ranging effects on the repair SC phenotype.

2.
Acta Biomater ; 178: 307-319, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38382831

ABSTRACT

Lithium (Li), a widely used drug for bipolar disorder management, is associated with many side effects due to systemic exposure. The localized delivery of lithium through implants could be an approach to overcome this challenge, for which biodegradable magnesium (Mg)-based materials are a promising choice. In this study, we focus on Mg-Li thin film alloys as potential Li-releasing implants. Therefore, we investigated the in vitro short-term corrosion behavior and cytocompatibility of two alloys, Mg-1.6wt%Li and Mg-9.5wt%Li. As glial cells are the key players of foreign body responses to implants, we used human glial cell lines for cytocompatibility studies, and a murine brain slice model for a more holistic view at the neuroinflammatory response. We found that Mg-1.6wt%Li corrodes approximately six times slower than Mg-9.5wt%Li. Microscopic analysis showed that the material surface (Mg-1.6wt%Li) is suitable for cell adhesion. The cytocompatibility test with Mg-1.6wt%Li and Mg-9.5wt%Li alloy extracts revealed that both cell types proliferated well up to 10 mM Mg concentration, irrespective of the Li concentration. In the murine brain slice model, Mg-1.6wt%Li and Mg-9.5wt%Li alloy extracts did not provoke a significant upregulation of glial inflammatory/ reactivity markers (IL-1ß, IL-6, FN1, TNC) after 24 h of exposure. Furthermore, the gene expression of IL-1ß (up to 3-fold) and IL-6 (up to 16-fold) were significantly downregulated after 96 h, and IL-6 downregulation showed a Li concentration dependency. Together, these results indicate the acute cytocompatibility of two Mg-Li thin film alloys and provide basis for future studies to explore promising applications of the material. STATEMENT OF SIGNIFICANCE: We propose the idea of lithium delivery to the brain via biodegradable implants to reduce systemic side effects of lithium for bipolar disorder therapy and other neurological applications. This is the first in vitro study investigating Mg-xLi thin film degradation under physiological conditions and its influence on cellular responses such as proliferation, viability, morphology and inflammation. Utilizing human brain-derived cell lines, we showed that the material surface of such a thin film alloy is suitable for normal cell attachment. Using murine brain slices, which comprise a multicellular network, we demonstrated that the material extracts did not elicit a pro-inflammatory response. These results substantiate that degradable Mg-Li materials are biocompatible and support the further investigation of their potential as neurological implants.


Subject(s)
Lithium , Magnesium , Humans , Animals , Mice , Lithium/pharmacology , Magnesium/pharmacology , Interleukin-6 , Absorbable Implants , Neuroglia , Alloys/pharmacology , Inflammation , Corrosion , Materials Testing
3.
Sci Rep ; 13(1): 12572, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37537223

ABSTRACT

Freestanding thin films of Mg-Li (magnesium-lithium) alloys with a Li mass fraction between 1.6% (m/m) and 9.5% (m/m) were prepared and studied with respect to their structure and degradation properties. With increasing Li content, the microstructure deviates from hexagonal Mg-Li with strict columnar growth and preferred orientation, and additional cubic Mg-Li and Li2CO3 occur. The corrosion rate was measured in Hanks' balanced salt solution by potentiodynamic polarisation and weight loss measurements to investigate biodegradation. Influences of the orientation, phase and protective layer formation lead to an increase in corrosion from 1.6 to 5.5% (m/m) from 0.13 ± 0.03 to 0.67 ± 0.29 mm/year when measured by potentiodynamic polarisation but a similar corrosion rate for 9.5% (m/m) and 3% (m/m) of Li of 0.27 ± 0.07 mm/year and 0.26 ± 0.05 mm/year.

4.
Eng Life Sci ; 21(3-4): 99, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33716609

ABSTRACT

DOI: 10.1002/elsc.202000037 The cover feature visualizes our recent article about the investigation of the regulation of the Pyruvate Dehydrogenase Complex (PDC) during the lactate switch in batch cultures of Chinese Hamster Ovary cells. The relevance of this work to bioprocess engineering is highlighted in the background and the central cellular metabolic regulations are shown symbolically on the right-hand side. The regulation of PDC through phosphorylation was quantified at three regulating sites using a novel indirect flow cytometry protocol, shown as "glowing" antibodies. For details see article DOI 10.1002/elsc.202000037 on page 99.

5.
Eng Life Sci ; 21(3-4): 100-114, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33716610

ABSTRACT

The metabolism of Chinese hamster ovary (CHO) cell lines is typically characterized by high rates of aerobic glycolysis with increased lactate formation, known as the "Warburg" effect. Although this metabolic state can switch to lactate consumption, the involved regulations of the central metabolism have only been partially studied so far. An important reaction transferring the lactate precursor, pyruvate, into the tricarboxylic acid cycle is the decarboxylation reaction catalyzed by the pyruvate dehydrogenase enzyme complex (PDC). Among other mechanisms, PDC is mainly regulated by phosphorylation-dephosphorylation at the three sites Ser232, Ser293, and Ser300. In this work, the PDC phosphorylation in antibody-producing CHO DP-12 cell culture is investigated during the lactate switch. Batch cultivations were carried out with frequent sampling (every 6 h) during the transition from lactate formation to lactate uptake, and the PDC phosphorylation levels were quantified using a novel indirect flow cytometry protocol. Contrary to the expected activation of PDC (i.e., reduced PDC phosphorylation) during lactate consumption, Ser293 and Ser300 phosphorylation levels were 33% higher compared to the phase of glucose excess. At the same time, the relative phosphorylation level of Ser232 increased steadily throughout the cultivation (66% increase overall). The intracellular pyruvate was found to accumulate only during the period of high lactate production, while acetyl-CoA showed nearly no accumulation. These results indicate a deactivation of PDC and reduced oxidative metabolism during lactate switch even though the cells undergo a metabolic transition to lactate-based cell growth and metabolism. Overall, this study provides a unique view on the regulation of PDC during the lactate switch, which contributes to an improved understanding of PDC and its interaction with the bioprocess.

6.
Biotechnol Bioeng ; 116(11): 2931-2943, 2019 11.
Article in English | MEDLINE | ID: mdl-31342512

ABSTRACT

The influence of process strategies on the dynamics of cell population heterogeneities in mammalian cell culture is still not well understood. We recently found that the progression of cells through the cell cycle causes metabolic regulations with variable productivities in antibody-producing Chimese hamster ovary (CHO) cells. On the other hand, it is so far unknown how bulk cultivation conditions, for example, variable nutrient concentrations depending on process strategies, can influence cell cycle-derived population dynamics. In this study, process-induced cell cycle synchronization was assessed in repeated-batch and fed-batch cultures. An automated flow cytometry set-up was developed to measure the cell cycle distribution online, using antibody-producing CHO DP-12 cells transduced with the cell cycle-specific fluorescent ubiquitination-based cell cycle indicator (FUCCI) system. On the basis of the population-resolved model, feeding-induced partial self-synchronization was predicted and the results were evaluated experimentally. In the repeated-batch culture, stable cell cycle oscillations were confirmed with an oscillating G1 phase distribution between 41% and 72%. Furthermore, oscillations of the cell cycle distribution were simulated and determined in a (bolus) fed-batch process with up to 25×106 cells/ml. The cell cycle synchronization arose with pulse feeding only and ceased with continuous feeding. Both simulated and observed oscillations occurred at higher frequencies than those observable based on regular (e.g., daily) sample analysis, thus demonstrating the need for high-frequency online cell cycle analysis. In summary, we showed how experimental methods combined with simulations enable the improved assessment of the effects of process strategies on the dynamics of cell cycle-dependent population heterogeneities. This provides a novel approach to understand cell cycle regulations, control cell population dynamics, avoid inadvertently induced oscillations of cell cycle distributions and thus to improve process stability and efficiency.


Subject(s)
Biological Clocks , Cell Cycle , Models, Biological , Animals , CHO Cells , Cricetinae , Cricetulus
SELECTION OF CITATIONS
SEARCH DETAIL
...