Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 6(10): 5527-5537, 2020 10 12.
Article in English | MEDLINE | ID: mdl-33320561

ABSTRACT

Nanozymes have drawn significant scientific interest due to their high practical importance in terms of overcoming the instability, complicated synthesis, and high cost of protein enzymes. However, their activity is generally limited to particular pHs, especially acidic ones. Herein, we report that luminescent N, S, and P-co-doped carbon quantum dots (NSP-CQDs) act as attractive peroxidase mimetics in a wide pH range, even at neutral pH, for the peroxidase substrate 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in the presence of H2O2. The synergistic effects of multiple heteroatoms doping in CQDs boost the catalytic activity in a wide pH range attributed to the presence of high density of active sites for enzymatic-like catalysis and accelerated electron transfer during the peroxidase-like reactions. A possible reaction mechanism for the peroxidase-like activity of CQDs is investigated based on the radical trapping experiments. Moreover, the multifunctional activity of NSP-CQDs was further utilized for antibacterial assays for both Gram-negative and Gram-positive model species, including Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), respectively. The growths of the employed E. coli and S. aureus were found to be significantly inhibited due to the peroxidase-mediated perturbation of cell walls. The present work signifies the current advance in the rational design of N, S, and P-co-doped CQDs as highly active peroxidase mimics for novel applications in diverse fields, including catalysis, medical diagnostics, environmental chemistry, and biotechnology.


Subject(s)
Quantum Dots , Anti-Bacterial Agents/pharmacology , Carbon , Escherichia coli , Hydrogen Peroxide , Peroxidases , Staphylococcus aureus
2.
J Biomed Nanotechnol ; 16(3): 283-303, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32493540

ABSTRACT

We report a facile one-step thermal treatment method for the synthesis of biocompatible, fluorescent nitrogen-phosphorus-doped carbon nanodots (NPCDs) as multifunctional agents for the food matrix decontamination, cancer targeting, and cellular bio-imaging. NPCDs exhibit high toxicity towards L. monocytogenes, as illustrated by fluorescent live-dead cell counting, disruption of membrane permeability/potential, changes in the levels of cellular ions, genetic materials, and proteins, as well as intracellular production of reactive oxygen species. The tryptophan and protein peaks released in NPCDs treated cells contributed to indole ring breathing and correlated with induced cell death. NPCDs significantly inhibited bacterial biofilm formation on a solid substrate. NPCDs-coated low-density polyethylene (LDPE) film crosslinked with 1% aminopropyltriethoxy silane (APTES) via silane-hydroxyl linking as a food-grade wrap significantly reduced bacterial counts in a raw chicken food model. Furthermore, NPCDs induced apoptosis in HeLa cervical cancer cells, as confirmed by the distorted cell morphology, fluorescence microscopic analysis, presence of fragmented nuclei and the qPCR results of mRNA expression levels of apoptotic markers. Moreover, NPCDs were also applicable in utilized for the cellular bio-imaging of KM12-C colon cancer cells under confocal microscopy owing to their excellent luminescence properties. Overall, NPCDs represent a promising platform to reduce the environmental health risks associated with hazardous pathogens, anticancer targeting, and their application in cellular bio-imaging as multifunctional targets/nanocarriers.


Subject(s)
Carbon , Quantum Dots , Decontamination , Humans , Nitrogen , Phosphorus
3.
Sci Rep ; 9(1): 2522, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30792461

ABSTRACT

Currently, the air and water pollutions are presenting the most serious global concerns. Despite the well known tremendous efforts, it could be a promising sustainability if the black carbon (BC) soot can be utilized for the practical and sustainable applications. For this, the almost complete aqueous phase photodegradation of the three well-known organic pollutant dyes as crystal violet (CV); rhodamine B (RhB); methylene blue (MB) and their mixture (CV + RhB + MB), by using water-soluble graphene nanosheets (wsGNS) isolated from the BC soot under the influence of natural sunlight is described. The plausible mechanism behind the photocatalytic degradation of dyes and their mixture has been critically analyzed via the trapping of active species and structural analysis of photodegraded products. The impact of diverse interfering ions like Ca2+, Fe3+, SO42-, HPO42-, NO3-, and Cl- on the photodegradation efficiency of wsGNS was also investigated. Importantly, the environmental assessment of the whole process has been evaluated towards the growth of wheat plants using the treated wastewater. The initial studies for the fifteen days confirmed that growth of wheat plants was almost the same in the photodegraded wastewater as being noticed in the control sample, while in case of dyes contaminated water it showed the retarded growth. Using the natural sunlight, the overall sustainability of the presented work holds the potential for the utilization of pollutant soot in real-practical applications related to the wastewater remediation and further the practical uses of treated water.

4.
ACS Omega ; 3(5): 5187-5194, 2018 May 31.
Article in English | MEDLINE | ID: mdl-31458732

ABSTRACT

The present finding deals with a simple and low-cost fabrication of surface-passivated, brightly fluorescent zinc-oxide-decorated, red-emitting excitation-independent ultrafluorescent CDs, denoted as "CZnO-Dots". Surface doping of zinc oxide significantly improved the quantum yield by up to ∼72%, and these brightly fluorescent red-emitting CZnO-Dots have been employed for the aqueous-phase photoreduction of 100 ppm hexavalent chromium(VI) to trivalent chromium(III) under the influence of sunlight irradiation. The overall utility of the prepared CZnO-Dots can be ascertained by their recyclability over seven cycles.

5.
ACS Omega ; 3(5): 5865, 2018 05 31.
Article in English | MEDLINE | ID: mdl-31465024

ABSTRACT

[This corrects the article DOI: 10.1021/acsomega.8b00047.].

SELECTION OF CITATIONS
SEARCH DETAIL
...