Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Divers ; 45(2): 199-210, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37069925

ABSTRACT

During the early Paleogene, greenhouse gases created warm global climates. These warm climates redistributed the habitat of marine and terrestrial biota globally. Understanding the ecology of biotas under extremely warm climates is important to decipher their behavior in future climate warming. Here we report two new legume fossils (Leguminocarpum meghalayensis Bhatia, Srivastava et Mehrotra sp. nov., and Parvileguminophyllum damalgiriensis Bhatia, Srivastava et Mehrotra sp. nov.) from the late Paleocene sediments of Tura Formation of Meghalaya, northeast India. Globally, the Paleocene legume fossil records indicate that legumes most likely immigrated to India from Africa via the Ladakh-Kohistan Arc during the early Paleogene. Moreover, previously reconstructed climate data from the Tura Formation indicate that legumes were well adapted to a warm seasonal climate with monsoon rains.

2.
ACS Appl Mater Interfaces ; 15(5): 7294-7307, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36705637

ABSTRACT

Lead halide perovskites are promising candidates for high-performance light-emitting diodes (LEDs); however, their applicability is limited by their structural instability toward moisture. Although a deliberate addition of water to the precursor solution has recently been shown to improve the crystallinity and optical properties of perovskites, the corresponding thin films still do not exhibit a near-unity quantum yield. Herein, we report that the direct addition of a minute amount of water to post-treated formamidinium lead bromide (FAPbBr3) nanocrystals (NCs) substantially enhances the stability while achieving a 95% photoluminescence quantum yield in a NC thin film. We unveil the mechanism of how moisture assists in the formation of an additional NH4Br component. Alongside, we demonstrate the crucial role of moisture in assisting localized etching of the perovskite crystal, facilitating the partial incorporation of NH4+, which is key for improved performance under ambient conditions. Finally, as a proof-of-concept, the application of post-treated and water-treated perovskites is tested in LEDs, with the latter exhibiting a superior performance, offering opportunities toward commercial application in moisture-stable optoelectronics.

3.
J Mater Chem C Mater ; 10(37): 13437-13461, 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36324302

ABSTRACT

Semiconducting nanomaterials have been widely explored in diverse optoelectronic applications. Colloidal lead halide perovskite nanocrystals (NCs) have recently been an excellent addition to the field of nanomaterials, promising an enticing building block in the field of light emission. In addition to the notable optoelectronic properties of perovskites, the colloidal NCs exhibit unique size-dependent optical properties due to the quantum size effect, which makes them highly attractive for light-emitting diodes (LEDs). In the past few years, perovskite-based LEDs (PeLEDs) have demonstrated a meteoritic rise in their external quantum efficiency (EQE) values, reaching over 20% so far. Among various halide perovskite compositions, FAPbBr3 and its variants remain one of the most interesting and sought-after compounds for green light emission. This review focuses on recent progress in the design and synthesis protocols of colloidal FAPbBr3 NCs and the emerging concepts in tailoring their surface chemistry. The structural and physicochemical features of lead halide perovskites along with a comprehensive discussion on their defect-tolerant properties are briefly outlined. Later, the prevalent synthesis, ligand, and compositional engineering strategies to boost the stability and photoluminescence quantum yield (PLQY) of FAPbBr3 NCs are extensively discussed. Finally, the fundamental concepts and recent progress on FAPbBr3-based LEDs, followed by a discussion of the challenges and prospects that are on the table for this enticing class of perovskites, are reviewed.

4.
ACS Appl Mater Interfaces ; 9(28): 23707-23715, 2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28570050

ABSTRACT

Use of lithium ion batteries is currently the method of choice when it comes to local stationary storage of electrical energy. In the search for an alternative system, fluoride ion batteries (FIBs) emerge as a candidate due to their high theoretical capacity, and no lithium is needed for its operation. To improve the cycling performance and lower the working temperature of a solid-state battery, one of the critical components is the electrolyte, which needs advanced performance. This paper aims at developing an electrolyte with enhanced ionic conductivity for fluoride ions, to be used in a FIB. Tysonite La1-xBaxF3-x (0 ≤ x ≤ 0.15) solid solutions were synthesized by a facile wet chemical method, and its ionic conductivity was analyzed using electrochemical impedance spectroscopy. A composition study shows that the conductivity reaches a maximum of 1.26 × 10-4 S·cm-1 at 60 °C for the La0.95Ba0.05F2.95 pellet sintered at 800 °C for 20 h, which is 1 order of magnitude higher than that for the as-prepared pellet and 2 times higher than the conductivity of sintered ball-milled batches. The reason for this dramatic increment is the more efficient decrement of grain boundary resistance upon sintering. Morphological, chemical, and structural characterizations of solid electrolytes were studied by X-ray diffraction, scanning electron microscopy , energy dispersive X-ray spectroscopy, physisorption by the Brunauer-Emmett-Teller method, and transmission electron microscopy. Electrochemical testing was carried out for the FIB cell using La0.95Ba0.05F2.95 as electrolyte due to its highest conductivity among the compositions, Ce as anode, and BiF3 as a cathode. The cycling performance was found to be considerably improved when compared to our earlier work, which used the ball-milled electrolyte.

SELECTION OF CITATIONS
SEARCH DETAIL