Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38464236

ABSTRACT

Multimodal measurements have become widespread in genomics, however measuring open chromatin accessibility and splicing simultaneously in frozen brain tissues remains unconquered. Hence, we devised Single-Cell-ISOform-RNA sequencing coupled with the Assay-for-Transposase-Accessible-Chromatin (ScISOr-ATAC). We utilized ScISOr-ATAC to assess whether chromatin and splicing alterations in the brain convergently affect the same cell types or divergently different ones. We applied ScISOr-ATAC to three major conditions: comparing (i) the Rhesus macaque (Macaca mulatta) prefrontal cortex (PFC) and visual cortex (VIS), (ii) cross species divergence of Rhesus macaque versus human PFC, as well as (iii) dysregulation in Alzheimer's disease in human PFC. We found that among cortical-layer biased excitatory neuron subtypes, splicing is highly brain-region specific for L3-5/L6 IT_RORB neurons, moderately specific in L2-3 IT_CUX2.RORB neurons and unspecific in L2-3 IT_CUX2 neurons. In contrast, at the chromatin level, L2-3 IT_CUX2.RORB neurons show the highest brain-region specificity compared to other subtypes. Likewise, when comparing human and macaque PFC, strong evolutionary divergence on one molecular modality does not necessarily imply strong such divergence on another molecular level in the same cell type. Finally, in Alzheimer's disease, oligodendrocytes show convergently high dysregulation in both chromatin and splicing. However, chromatin and splicing dysregulation most strongly affect distinct oligodendrocyte subtypes. Overall, these results indicate that chromatin and splicing can show convergent or divergent results depending on the performed comparison, justifying the need for their concurrent measurement to investigate complex systems. Taken together, ScISOr-ATAC allows for the characterization of single-cell splicing and chromatin patterns and the comparison of sample groups in frozen brain samples.

2.
Cell Rep ; 43(3): 113883, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38430517

ABSTRACT

Phosphomannomutase 2-congenital disorder of glycosylation (PMM2-CDG) is a rare inborn error of metabolism caused by deficiency of the PMM2 enzyme, which leads to impaired protein glycosylation. While the disorder presents with primarily neurological symptoms, there is limited knowledge about the specific brain-related changes caused by PMM2 deficiency. Here, we demonstrate aberrant neural activity in 2D neuronal networks from PMM2-CDG individuals. Utilizing multi-omics datasets from 3D human cortical organoids (hCOs) derived from PMM2-CDG individuals, we identify widespread decreases in protein glycosylation, highlighting impaired glycosylation as a key pathological feature of PMM2-CDG, as well as impaired mitochondrial structure and abnormal glucose metabolism in PMM2-deficient hCOs, indicating disturbances in energy metabolism. Correlation between PMM2 enzymatic activity in hCOs and symptom severity suggests that the level of PMM2 enzyme function directly influences neurological manifestations. These findings enhance our understanding of specific brain-related perturbations associated with PMM2-CDG, offering insights into the underlying mechanisms and potential directions for therapeutic interventions.


Subject(s)
Congenital Disorders of Glycosylation , Phosphotransferases (Phosphomutases)/deficiency , Humans , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/metabolism , Glycosylation
4.
Nat Neurosci ; 26(8): 1339-1351, 2023 08.
Article in English | MEDLINE | ID: mdl-37460808

ABSTRACT

Extrinsic signaling between diverse cell types is crucial for nervous system development. Ligand binding is a key driver of developmental processes. Nevertheless, it remains a significant challenge to disentangle which and how extrinsic signals act cooperatively to affect changes in recipient cells. In the developing human brain, cortical progenitors transition from neurogenesis to gliogenesis in a stereotyped sequence that is in part influenced by extrinsic ligands. Here we used published transcriptomic data to identify and functionally test five ligand-receptor pairs that synergistically drive human astrogenesis. We validate the synergistic contributions of TGFß2, NLGN1, TSLP, DKK1 and BMP4 ligands on astrocyte development in both hCOs and primary fetal tissue. We confirm that the cooperative capabilities of these five ligands are greater than their individual capacities. Additionally, we discovered that their combinatorial effects converge in part on the mTORC1 signaling pathway, resulting in transcriptomic and morphological features of astrocyte development. Our data-driven framework can leverage single-cell and bulk genomic data to generate and test functional hypotheses surrounding cell-cell communication regulating neurodevelopmental processes.


Subject(s)
Astrocytes , Neurogenesis , Humans , Astrocytes/metabolism , Ligands , Neurogenesis/physiology , Signal Transduction/physiology , Brain
5.
Neurobiol Dis ; 184: 106196, 2023 08.
Article in English | MEDLINE | ID: mdl-37315905

ABSTRACT

Reactive microglia are observed with aging and in Lewy body disorders, including within the olfactory bulb of men with Parkinson's disease. However, the functional impact of microglia in these disorders is still debated. Resetting these reactive cells by a brief dietary pulse of the colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 may hold therapeutic potential against Lewy-related pathologies. To our knowledge, withdrawal of PLX5622 after short-term exposure has not been tested in the preformed α-synuclein fibril (PFF) model, including in aged mice of both sexes. Compared to aged female mice, we report that aged males on the control diet showed higher numbers of phosphorylated α-synuclein+ inclusions in the limbic rhinencephalon after PFFs were injected in the posterior olfactory bulb. However, aged females displayed larger inclusion sizes compared to males. Short-term (14-day) dietary exposure to PLX5622 followed by control chow reduced inclusion numbers and levels of insoluble α-synuclein in aged males-but not females-and unexpectedly raised inclusion sizes in both sexes. Transient delivery of PLX5622 also improved spatial reference memory in PFF-infused aged mice, as evidenced by an increase in novel arm entries in a Y-maze. Superior memory was positively correlated with inclusion sizes but negatively correlated with inclusion numbers. Although we caution that PLX5622 delivery must be tested further in models of α-synucleinopathy, our data suggest that larger-sized-but fewer-α-synucleinopathic structures are associated with better neurological outcomes in PFF-infused aged mice.


Subject(s)
Lewy Body Disease , Parkinson Disease , Synucleinopathies , Male , Female , Mice , Animals , alpha-Synuclein , Synucleinopathies/pathology , Lewy Body Disease/pathology , Parkinson Disease/pathology
6.
J Control Release ; 354: 368-393, 2023 02.
Article in English | MEDLINE | ID: mdl-36642252

ABSTRACT

Ischemic stroke causes brain endothelial cell (BEC) death and damages tight junction integrity of the blood-brain barrier (BBB). We harnessed the innate mitochondrial load of BEC-derived extracellular vesicles (EVs) and utilized mixtures of EV/exogenous 27 kDa heat shock protein (HSP27) as a one-two punch strategy to increase BEC survival (via EV mitochondria) and preserve their tight junction integrity (via HSP27 effects). We demonstrated that the medium-to-large (m/lEV) but not small EVs (sEV) transferred their mitochondrial load, that subsequently colocalized with the mitochondrial network of the recipient primary human BECs. Recipient BECs treated with m/lEVs showed increased relative ATP levels and mitochondrial function. To determine if the m/lEV-meditated increase in recipient BEC ATP levels was associated with m/lEV mitochondria, we isolated m/lEVs from donor BECs pre-treated with oligomycin A (OGM, mitochondria electron transport complex V inhibitor), referred to as OGM-m/lEVs. BECs treated with naïve m/lEVs showed a significant increase in ATP levels compared to untreated OGD cells, OGM-m/lEVs treated BECs showed a loss of ATP levels suggesting that the m/lEV-mediated increase in ATP levels is likely a function of their innate mitochondrial load. In contrast, sEV-mediated ATP increases were not affected by inhibition of mitochondrial function in the donor BECs. Intravenously administered m/lEVs showed a reduction in brain infarct sizes compared to vehicle-injected mice in a mouse middle cerebral artery occlusion model of ischemic stroke. We formulated binary mixtures of human recombinant HSP27 protein with EVs: EV/HSP27 and ternary mixtures of HSP27 and EVs with a cationic polymer, poly (ethylene glycol)-b-poly (diethyltriamine): (PEG-DET/HSP27)/EV. (PEG-DET/HSP27)/EV and EV/HSP27 mixtures decreased the paracellular permeability of small and large molecular mass fluorescent tracers in oxygen glucose-deprived primary human BECs. This one-two punch approach to increase BEC metabolic function and tight junction integrity may be a promising strategy for BBB protection and prevention of long-term neurological dysfunction post-ischemic stroke.


Subject(s)
Extracellular Vesicles , Ischemic Stroke , Stroke , Mice , Humans , Animals , HSP27 Heat-Shock Proteins/metabolism , Brain/metabolism , Blood-Brain Barrier/metabolism , Stroke/metabolism , Infarction, Middle Cerebral Artery/metabolism , Heat-Shock Proteins/metabolism , Ischemic Stroke/metabolism , Mitochondria/metabolism , Extracellular Vesicles/metabolism , Adenosine Triphosphate/metabolism
7.
Prog Neurobiol ; 216: 102307, 2022 09.
Article in English | MEDLINE | ID: mdl-35710046

ABSTRACT

Lewy body disorders are characterized by oxidative damage to DNA and inclusions rich in aggregated forms of α-synuclein. Among other roles, apurinic/apyrimidinic endonuclease 1 (APE1) repairs oxidative DNA damage, and APE1 polymorphisms have been linked to cases of Lewy body disorders. However, the link between APE1 and α-synuclein is unexplored. We report that knockdown or inhibition of APE1 amplified inclusion formation in primary hippocampal cultures challenged with preformed α-synuclein fibrils. Fibril infusions into the mouse olfactory bulb/anterior olfactory nucleus (OB/AON) elicited a modest decrease in APE1 expression in the brains of male mice but an increase in females. Similarly, men with Lewy body disorders displayed lower APE1 expression in the OB and amygdala compared to women. Preformed fibril infusions of the mouse OB/AON induced more robust base excision repair of DNA lesions in females than males. No fibril-mediated loss of APE1 expression was observed in male mice when the antioxidant N-acetylcysteine was added to their diet. These findings reveal a potential sex-biased link between α-synucleinopathy and APE1 in mice and humans. Further studies are warranted to determine how this multifunctional protein modifies α-synuclein inclusions and, conversely, how α-synucleinopathy and biological sex interact to modify APE1.


Subject(s)
Lewy Body Disease , Synucleinopathies , Animals , DNA/metabolism , DNA Repair , Endonucleases/metabolism , Female , Humans , Lewy Body Disease/pathology , Male , Mice , Oxidation-Reduction , alpha-Synuclein/metabolism
8.
Neurotherapeutics ; 18(4): 2541-2564, 2021 10.
Article in English | MEDLINE | ID: mdl-34528172

ABSTRACT

The role of molecular chaperones, such as heat shock protein 70 (Hsp70), is not typically studied as a function of biological sex, but by addressing this gap we might improve our understanding of proteinopathic disorders that predominate in one sex. Therefore, we exposed male or female primary hippocampal cultures to preformed α-synuclein fibrils in a model of early-stage Lewy pathology. We first discovered that two mechanistically distinct inhibitors of Hsp70 function increased phospho-α-synuclein+ inclusions more robustly in male-derived neurons. Because Hsp70 is released into extracellular compartments and may restrict cell-to-cell transmission/amplification of α-synucleinopathy, we then tested the effects of low-endotoxin, exogenous Hsp70 (eHsp70) in primary hippocampal cultures. eHsp70 was taken up by and reduced α-synuclein+ inclusions in cells of both sexes, but pharmacological suppression of Hsp70 function attenuated the inhibitory effect of eHsp70 on perinuclear inclusions only in male neurons. In 20-month-old male mice infused with α-synuclein fibrils in the olfactory bulb, daily intranasal eHsp70 delivery also reduced inclusion numbers and the time to locate buried food. eHsp70 penetrated the limbic system and spinal cord of male mice within 3 h but was cleared within 72 h. Unexpectedly, no evidence of eHsp70 uptake from nose into brain was observed in females. A trend towards higher expression of inducible Hsp70-but not constitutive Hsp70 or Hsp40-was observed in amygdala tissues from male subjects with Lewy body disorders compared to unaffected male controls, supporting the importance of this chaperone in human disease. Women expressed higher amygdalar Hsp70 levels compared to men, regardless of disease status. Together, these data provide a new link between biological sex and a key chaperone that orchestrates proteostasis.


Subject(s)
HSP70 Heat-Shock Proteins , Lewy Body Disease , Sex Factors , Synucleinopathies , Animals , Female , HSP70 Heat-Shock Proteins/metabolism , Humans , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Lewy Body Disease/metabolism , Male , Mice , Olfactory Bulb , Rats, Sprague-Dawley , Synucleinopathies/metabolism , alpha-Synuclein/metabolism
9.
CNS Neurosci Ther ; 27(5): 515-527, 2021 05.
Article in English | MEDLINE | ID: mdl-33650313

ABSTRACT

Stroke is a leading cause of disability and mortality, with limited treatment options. After stroke injury, microglia and CNS-resident macrophages are rapidly activated and regulate neuropathological processes to steer the course of functional recovery. To accelerate this recovery, microglia can engulf dying cells and clear irreparably-damaged tissues, thereby creating a microenvironment that is more suitable for the formation of new neural circuitry. In addition, monocyte-derived macrophages cross the compromised blood-brain barrier to infiltrate the injured brain. The specific functions of myeloid lineage cells in brain injury and repair are diverse and dependent on phenotypic polarization statuses. However, it remains to be determined to what degree the CNS-invading macrophages occupy different functional niches from CNS-resident microglia. In this review, we describe the physiological characteristics and functions of microglia in the developing and adult brain. We also review (a) the activation and phenotypic polarization of microglia and macrophages after stroke, (b) molecular mechanisms that control polarization status, and (c) the contribution of microglia to brain pathology versus repair. Finally, we summarize current breakthroughs in therapeutic strategies that calibrate microglia/macrophage responses after stroke.


Subject(s)
Brain Injuries/pathology , Macrophages/pathology , Microglia/pathology , Stroke/pathology , Adult , Animals , Brain Injuries/etiology , Cell Polarity , Humans , Macrophage Activation , Stroke/complications
11.
Pharmacol Res ; 150: 104371, 2019 12.
Article in English | MEDLINE | ID: mdl-31415915

ABSTRACT

This paper assesses in vivo cytotoxicity models of Huntington's disease (HD). Nearly 150 agents were found to be moderately to highly effective in mitigating the pathological sequelae of cytotoxic induction of HD features in multiple rodent models. Typically, rodents are treated with a prospective HD-protective agent before, during, or after the application of a chemical or transgenic process for inducing histopathological and behavioral symptoms of HD. Although transgenic and knockout rodent models (1) display relatively high construct and face validity, and (2) are ever more routinely employed to mimic genetic-to-phenotypic expression of HD features, toxicant models are also often employed, and have served as valuable test beds for the elucidation of biochemical processes and discovery of therapeutic targets in HD. Literature searches of the toxicant HD rodent models yielded nearly 150 agents that were moderately to highly effective in mitigating pathological sequelae in multiple mouse and rat HD models. Experimental models, study designs, and exposure protocols (e.g., pre- and post-conditioning) used in testing these agents were assessed, including dosing strategies, endpoints, and dose-response features. Hormetic-like biphasic dose responses, chemoprotective mechanisms, and the translational relevance of the preclinical studies and their therapeutic implications are critically analyzed in the present report. Notably, not one of the 150 agents that successfully delayed onset and progression of HD in the experimental models has been successfully translated to the treatment of humans in a clinical setting. Potential reasons for these translational failures are (1) the inadequacy of dose-response analyses and subsequent lack of useful dosing data; (2) effective rodent doses that are too high for safe human application; (3) key differences between the experimental models and humans in pharmacokinetic/pharmacodynamic features, ages and routes of agent administration; (4) lack of robust pharmacokinetic, mechanistic or systematic approaches to probe novel treatment strategies; and (5) inadequacies of the chemically induced HD model in rats to mimic accurately the complex genetic and developmental origin and progression of HD in humans. These deficiencies need to be urgently addressed if pharmaceutical agents for the treatment of HD are going to be successfully developed in experimental models and translated with fidelity to the clinic.


Subject(s)
Hormesis , Huntington Disease/prevention & control , Neuroprotective Agents/therapeutic use , Translational Research, Biomedical/methods , Animals , Humans , Huntington Disease/pathology , Translational Research, Biomedical/statistics & numerical data
12.
Front Mol Neurosci ; 12: 87, 2019.
Article in English | MEDLINE | ID: mdl-31024254

ABSTRACT

In order to fulfill their evolutionary role as support cells, astrocytes have to tolerate intense oxidative stress under conditions of brain injury and disease. It is well known that astrocytes exposed to mild oxidative stress are preconditioned against subsequent stress exposure in dual hit models. However, it is unclear whether severe oxidative stress leads to stress tolerance, stress exacerbation, or no change in stress resistance in astrocytes. Furthermore, it is not known whether reactive astrocytes surviving intense oxidative stress can still support nearby neurons. The data in this Brief Report suggest that primary cortical astrocytes surviving high concentrations of the oxidative toxicant paraquat are completely resistant against subsequent oxidative challenges of the same intensity. Inhibitors of multiple endogenous defenses (e.g., glutathione, heme oxygenase 1, ERK1/2, Akt) failed to abolish or even reduce their stress resistance. Stress-reactive cortical astrocytes surviving intense oxidative stress still managed to protect primary cortical neurons against subsequent oxidative injuries in neuron/astrocyte co-cultures, even at concentrations of paraquat that otherwise led to more than 80% neuron loss. Although our previous work demonstrated a lack of stress tolerance in primary neurons exposed to dual paraquat hits, here we show that intensely stressed primary neurons can resist a second hit of hydrogen peroxide. These collective findings suggest that stress-reactive astroglia are not necessarily neurotoxic, and that severe oxidative stress does not invariably lead to stress exacerbation in either glia or neurons. Therefore, interference with the natural functions of stress-reactive astrocytes might have the unintended consequence of accelerating neurodegeneration.

13.
Brain Pathol ; 29(6): 741-770, 2019 11.
Article in English | MEDLINE | ID: mdl-30854742

ABSTRACT

At early disease stages, Lewy body disorders are characterized by limbic vs. brainstem α-synucleinopathy, but most preclinical studies have focused solely on the nigrostriatal pathway. Furthermore, male gender and advanced age are two major risk factors for this family of conditions, but their influence on the topographical extents of α-synucleinopathy and the degree of cell loss are uncertain. To fill these gaps, we infused α-synuclein fibrils in the olfactory bulb/anterior olfactory nucleus complex-one of the earliest and most frequently affected brain regions in Lewy body disorders-in 3-month-old female and male mice and in 11-month-old male mice. After 6 months, we observed that α-synucleinopathy did not expand significantly beyond the limbic connectome in the 9-month-old male and female mice or in the 17-month-old male mice. However, the 9-month-old male mice had developed greater α-synucleinopathy, smell impairment and cell loss than age-matched females. By 10.5 months post-infusion, fibril treatment hastened mortality in the 21.5-month-old males, but the inclusions remained centered in the limbic system in the survivors. Although fibril infusions reduced the number of cells expressing tyrosine hydroxylase in the substantia nigra of young males at 6 months post-infusion, this was not attributable to true cell death. Furthermore, mesencephalic α-synucleinopathy, if present, was centered in mesolimbic circuits (ventral tegmental area/accumbens) rather than within strict boundaries of the nigral pars compacta, which were defined here by tyrosine hydroxylase immunolabel. Nonprimate models cannot be expected to faithfully recapitulate human Lewy body disorders, but our murine model seems reasonably suited to (i) capture some aspects of Stage IIb of Lewy body disorders, which displays a heavier limbic than brainstem component compared to incipient Parkinson's disease; and (ii) leverage sex differences and the acceleration of mortality following induction of olfactory α-synucleinopathy.


Subject(s)
Olfactory Bulb/metabolism , Synucleinopathies/pathology , alpha-Synuclein/metabolism , Animals , Brain/pathology , Female , Inclusion Bodies/pathology , Lewy Bodies/pathology , Lewy Body Disease/pathology , Limbic System/pathology , Male , Mice , Olfactory Cortex/pathology , Sex Factors , Substantia Nigra/metabolism
14.
Pharmacol Res ; 137: 236-249, 2018 11.
Article in English | MEDLINE | ID: mdl-30326267

ABSTRACT

The activation or polarization of macrophages to pro- or anti-inflammatory states evolved as an adaptation to protect against a spectrum of biological threats. Such an adaptation engages pro-oxidative mechanisms and enables macrophages to neutralize and kill threatening organisms (e.g., viruses, bacteria, mold), limit cancerous growths, and enhance recovery and repair processes. The present study demonstrates that (1) many diverse pharmacological, chemical and physical agents can mediate a dose/concentration-dependent shift between pro- and anti-inflammatory activation states, and (2) these shifts in activation states display biphasic dose-response relationships that are characteristic of hormesis. This study also reveals that preconditioning-another form of hormesis-similarly mediates tissue protection by the polarization of macrophages, but in this case, towards an anti-inflammatory phenotype. This assessment supports the generalizability and significance of hormesis in biology, medicine, and public health and further extends it to encompass the hormetic activation of macrophages.


Subject(s)
Hormesis , Macrophage Activation , Animals , Humans , Phenotype
15.
J Cereb Blood Flow Metab ; 38(12): 2073-2091, 2018 12.
Article in English | MEDLINE | ID: mdl-30191760

ABSTRACT

Recent advances in stroke reperfusion therapies have led to remarkable improvement in clinical outcomes, but many patients remain severely disabled, due in part to the lack of effective neuroprotective strategies. In this review, we show that 95% of published preclinical studies on "neuroprotectants" (1990-2018) reported positive outcomes in animal models of ischemic stroke, while none translated to successful Phase III trials. There are many complex reasons for this failure in translational research, including that the majority of clinical trials did not test early delivery of neuroprotectants in combination with successful reperfusion. In contrast to the clinical trials, >80% of recent preclinical studies examined the neuroprotectant in animal models of transient ischemia with complete reperfusion. Furthermore, only a small fraction of preclinical studies included long-term functional assessments, aged animals of both genders, and models with stroke comorbidities. Recent clinical trials demonstrate that 70%-80% of patients treated with endovascular thrombectomy achieve successful reperfusion. These successes revive the opportunity to retest previously failed approaches, including cocktail drugs that target multiple injury phases and different cell types. It is our hope that neurovascular protectants can be retested in future stroke research studies with specific criteria outlined in this review to increase translational successes.


Subject(s)
Cerebral Revascularization/methods , Neuroprotective Agents/pharmacology , Reperfusion/methods , Stroke/therapy , Animals , Humans
16.
Exp Neurol ; 299(Pt A): 172-196, 2018 01.
Article in English | MEDLINE | ID: mdl-29056362

ABSTRACT

Lewy body disorders are characterized by the emergence of α-synucleinopathy in many parts of the central and peripheral nervous systems, including in the telencephalon. Dense α-synuclein+ pathology appears in regio inferior of the hippocampus in both Parkinson's disease and dementia with Lewy bodies and may disturb cognitive function. The preformed α-synuclein fibril model of Parkinson's disease is growing in use, given its potential for seeding the self-propagating spread of α-synucleinopathy throughout the mammalian brain. Although it is often assumed that the spread occurs through neuroanatomical connections, this is generally not examined vis-à-vis the uptake and transport of tract-tracers infused at precisely the same stereotaxic coordinates. As the neuronal connections of the hippocampus are historically well defined, we examined the first-order spread of α-synucleinopathy three months following fibril infusions centered in the mouse regio inferior (CA2+CA3), and contrasted this to retrograde and anterograde transport of the established tract-tracers FluoroGold and biotinylated dextran amines (BDA). Massive hippocampal α-synucleinopathy was insufficient to elicit memory deficits or loss of cells and synaptic markers in this model of early disease processes. However, dense α-synuclein+ inclusions in the fascia dentata were negatively correlated with memory capacity. A modest compensatory increase in synaptophysin was evident in the stratum radiatum of cornu Ammonis in fibril-infused animals, and synaptophysin expression correlated inversely with memory function in fibril but not PBS-infused mice. No changes in synapsin I/II expression were observed. The spread of α-synucleinopathy was somewhat, but not entirely consistent with FluoroGold and BDA axonal transport, suggesting that variables other than innervation density also contribute to the materialization of α-synucleinopathy. For example, layer II entorhinal neurons of the perforant pathway exhibited somal α-synuclein+ inclusions as well as retrogradely labeled FluoroGold+ somata. However, some afferent brain regions displayed dense retrograde FluoroGold label and no α-synuclein+ inclusions (e.g. medial septum/diagonal band), supporting the selective vulnerability hypothesis. The pattern of inclusions on the contralateral side was consistent with specific spread through commissural connections (e.g. stratum pyramidale of CA3), but again, not all commissural projections exhibited α-synucleinopathy (e.g. hilar mossy cells). The topographical extent of inclusions is displayed here in high-resolution images that afford viewers a rich opportunity to dissect the potential spread of pathology through neural circuitry. Finally, the results of this expository study were leveraged to highlight the challenges and limitations of working with preformed α-synuclein fibrils.


Subject(s)
Lewy Body Disease/pathology , Neurofibrils , alpha-Synuclein , Animals , Behavior, Animal , Disease Models, Animal , Hippocampus/pathology , Inclusion Bodies/pathology , Lewy Body Disease/psychology , Limbic System/pathology , Memory Disorders/pathology , Memory Disorders/psychology , Mice , Mice, Inbred C57BL , Neural Pathways/pathology , Synaptic Transmission , Telencephalon/pathology
17.
Brain Struct Funct ; 223(3): 1255-1273, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29103154

ABSTRACT

Dopamine loss and motor deficits in Parkinson's disease typically commence unilaterally and remain asymmetric for many years, raising the possibility that endogenous defenses slow the cross-hemispheric transmission of pathology. It is well-established that the biological response to subtoxic stress prepares cells to survive subsequent toxic challenges, a phenomenon known as preconditioning, tolerance, or stress adaptation. Here we demonstrate that unilateral striatal infusions of the oxidative toxicant 6-hydroxydopamine (6-OHDA) precondition the contralateral nigrostriatal pathway against the toxicity of a second 6-OHDA infusion in the opposite hemisphere. 6-OHDA-induced loss of dopaminergic terminals in the contralateral striatum was ablated by cross-hemispheric preconditioning, as shown by two independent markers of the dopaminergic phenotype, each measured by two blinded observers. Similarly, loss of dopaminergic somata in the contralateral substantia nigra was also abolished, according to two blinded measurements. Motor asymmetries in floor landings, forelimb contacts with a wall, and spontaneous turning behavior were consistent with these histological observations. Unilateral 6-OHDA infusions increased phosphorylation of the kinase ERK2 and expression of the antioxidant enzyme CuZn superoxide dismutase in both striata, consistent with our previous mechanistic work showing that these two proteins mediate preconditioning in dopaminergic cells. These findings support the existence of cross-hemispheric preconditioning in Parkinson's disease and suggest that dopaminergic neurons mount impressive natural defenses, despite their reputation as being vulnerable to oxidative injury. If these results generalize to humans, Parkinson's pathology may progress slowly and asymmetrically because exposure to a disease-precipitating insult induces bilateral upregulation of endogenous defenses and elicits cross-hemispheric preconditioning.


Subject(s)
Corpus Striatum/pathology , Functional Laterality/physiology , Parkinsonian Disorders/pathology , Parkinsonian Disorders/physiopathology , Substantia Nigra/pathology , Adrenergic Agents/toxicity , Animals , Anthraquinones/metabolism , Corpus Striatum/metabolism , Disease Models, Animal , Dopamine/metabolism , Dopaminergic Neurons/physiology , Functional Laterality/drug effects , Male , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Oxidopamine/toxicity , Parkinsonian Disorders/chemically induced , Substantia Nigra/metabolism , Superoxide Dismutase/metabolism , Tyrosine 3-Monooxygenase/metabolism
18.
Mol Pharmacol ; 92(5): 564-575, 2017 11.
Article in English | MEDLINE | ID: mdl-28830914

ABSTRACT

N-acetyl-l-cysteine (NAC) exhibits protective properties in brain injury models and has undergone a number of clinical trials. Most studies of NAC have focused on neurons. However, neuroprotection may be complemented by the protection of astrocytes because healthier astrocytes can better support the viability of neurons. Here, we show that NAC can protect astrocytes against protein misfolding stress (proteotoxicity), the hallmark of neurodegenerative disorders. Although NAC is thought to be a glutathione precursor, NAC protected primary astrocytes from the toxicity of the proteasome inhibitor MG132 without eliciting any increase in glutathione. Furthermore, glutathione depletion failed to attenuate the protective effects of NAC. MG132 elicited a robust increase in the folding chaperone heat shock protein 70 (Hsp70), and NAC mitigated this effect. Nevertheless, three independent inhibitors of Hsp70 function ablated the protective effects of NAC, suggesting that NAC may help preserve Hsp70 chaperone activity and improve protein quality control without need for Hsp70 induction. Consistent with this view, NAC abolished an increase in ubiquitinated proteins in MG132-treated astrocytes. However, NAC did not affect the loss of proteasome activity in response to MG132, demonstrating that it boosted protein homeostasis and cell viability without directly interfering with the efficacy of this proteasome inhibitor. The thiol-containing molecules l-cysteine and d-cysteine both mimicked the protective effects of NAC, whereas the thiol-lacking molecule N-acetyl-S-methyl-l-cysteine failed to exert protection or blunt the rise in ubiquitinated proteins. Collectively, these findings suggest that the thiol group in NAC is required for its effects on glial viability and protein quality control.


Subject(s)
Acetylcysteine/pharmacology , Astrocytes/drug effects , Cytoprotection/drug effects , Glutathione , Protein Folding/drug effects , Animals , Astrocytes/physiology , Cell Survival/drug effects , Cell Survival/physiology , Cytoprotection/physiology , Dose-Response Relationship, Drug , Female , HSP70 Heat-Shock Proteins/antagonists & inhibitors , HSP70 Heat-Shock Proteins/physiology , Leupeptins/toxicity , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...