Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
2.
Bioresour Technol ; 399: 130578, 2024 May.
Article in English | MEDLINE | ID: mdl-38479627

ABSTRACT

This life cycle assessment (LCA) study analyzed the environmental consequences of integrating microalgae-based wastewater treatment into a shrimp farm with recirculating aquaculture systems (RAS). Microalgae treatment produced <10 % of the system's freshwater eutrophication potential (FEP), marine eutrophication potential (MEP) and global warming potential, which was dominantly contributed by electricity use. Microalgae treatment performed comparably to activated sludge treatment for FEP reduction, and was more effective in remediating marine eutrophication. Replacing coal in electricity mix, particularly with renewables, reduced the system's impacts by up to 90-99 %. Performing the LCA based on system expansion generally obtained higher impacts compared to allocation. Utilizing algal biomass for biogas production reduced the MEP; however, production of feed ingredient and biodiesel were not environmentally beneficial. This study proved the use of microalgae for aquaculture wastewater treatment to be environmentally feasible, the results can guide more sustainable RAS operations and design of full-scale microalgae treatment.


Subject(s)
Microalgae , Water Purification , Animals , Wastewater , Feasibility Studies , Aquaculture/methods , Water Purification/methods , Crustacea , Biofuels , Biomass , Life Cycle Stages
3.
Environ Pollut ; 345: 123468, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38301819

ABSTRACT

Aquaculture is a controlled aquatic farming sector and one of the most important human food sources. Fish farming is one of the predominant, fast-growing sectors that supply seafood products worldwide. Along with its benefits, aquaculture practices can discharge large quantities of nutrients into the environment through non-treated or poorly treated wastewater. This study aims to understand the nutrient composition of fish wastewater and the use of indigenous bacteria, cyanobacteria, and microalgae as an alternative biological treatment method. Wastewater samples from a local fish farming facility were collected and treated using six different species of cyanobacteria and microalgae include Chroococcus minutus, Porphyridium cruentum, Chlorella vulgaris, Microcystis aeruginosa, Chlamydomonas reinhardtii, and Fischerella muscicola. All the samples were incubated for 21 days, and the following parameters were measured weekly: Chemical oxygen demand (COD), phosphate, total dissolved nitrogen, and dissolved inorganic nitrogen. In addition, dissolved organic nitrogen (DON), bioavailable DON (ABDON), and biodegradable DON (BDON) were calculated from the mass-balance equations. Colorimetric and digestive methods were used for the parameter measurements. The results showed that C. reinhardtii reduced the soluble COD concentration by 74.6 %, DON by 94.3 %, and phosphorous by more than 99 %. Moreover, M. aeruginosa, and C. minutus significantly reduced inorganic nitrogen species (>99 %). This alternative fish wastewater treatment method was explored to gain insight into fish wastewater nutrient composition and to create a sustainable alternative to conventional fish wastewater treatment methods.


Subject(s)
Chlorella vulgaris , Cyanobacteria , Microalgae , Animals , Humans , Wastewater , Waste Disposal, Fluid/methods , Biological Availability , Aquaculture , Nitrogen/analysis , Biomass
4.
Environ Res ; 250: 118447, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38341075

ABSTRACT

Shrimp production facilities produce large quantities of wastewater, which consists of organic and inorganic pollutants. High concentrations of these pollutants in shrimp wastewater cause serious environmental problems and, therefore, a method of treating this wastewater is an important research topic. This study investigated the impact of algae and indigenous bacteria on treating shrimp wastewater. A total of four different microalgae cultures, including Chlorococcum minutus, Porphyridum cruentum, Chlorella vulgaris and Chlorella reinhardtii along with two cyanobacterial cultures, Microcystis aeruginosa and Fishcherella muscicola were used with indigenous bacterial cultures to treat shrimp wastewater. The highest soluble chemical oxygen demand (sCOD) removal rate (95%) was observed in the samples that were incubated using F. muscicola. Total dissolved nitrogen was degraded >90% in the C. vulgaris, M. aeruginosa, and C. reinhardtii seeded samples. Dissolved organic nitrogen removal was significantly higher for C. vulgaris (93%) as compared to other treatments. Similarly, phosphate degradation was very successful for all the algae-bacteria consortium (>99%). Moreover, the degradation kinetics were calculated, and the lowest half-life (t1/2) for sCOD (5 days) was recorded for the samples seeded with M. aeruginosa. Similarly, treatment with F. muscicola and C. reinhardtii showed the lowest t1/2 of NH3-N (2.9 days) and phosphate (2.7 days) values. Overall, the results from this study suggest that the symbiotic relationship between indigenous bacteria and algae significantly enhanced the process of shrimp wastewater treatment within 21 days of incubation. The outcome of this study supports resource recovery in the aquaculture sector and could be beneficial to treat a large-scale shrimp facility's wastewater worldwide.


Subject(s)
Aquaculture , Wastewater , Animals , Wastewater/microbiology , Wastewater/chemistry , Penaeidae/microbiology , Waste Disposal, Fluid/methods , Nitrogen/analysis , Bacteria/metabolism , Microalgae , Biodegradation, Environmental , Water Pollutants, Chemical/analysis , Biological Oxygen Demand Analysis
5.
ACS Omega ; 8(33): 30294-30305, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37636954

ABSTRACT

The functional and tableting properties of barnyard millet starch (Echinochloa esculenta) were investigated in its native (alkali-treated) and chemically modified (phosphorylated) states. The grains were pulverized, soaked, and ground before filtration to separate starch and protein. Multiple NaOH treatments were performed. The starch was washed, neutralized, and dried. Sodium tripolyphosphate (STPP) and sodium sulfate were used to modify the starch, followed by maceration, washing, and drying to remove unreacted chemicals. The amylose content of alkali-treated barnyard millet starch increased by 19.96 ± 3.56% w/w. The amount of protein, the kind of starch used, and the size of the starch granules, all affected the ability of the starch granules to swell up. It was observed that alkali-extracted barnyard millet starch (AZS) has a swelling power of 194.3 ± 0.0064% w/w. The swelling capacity of treated starch was lesser as compared to the native alkali barnyard millet starch. Decrement in swelling power of phosphorylated starch was observed due to tightening of bonds in the molecular structure. The moisture content of the excipients may affect the overall stability of the formulation. The moisture content of the AZS was found to be 15.336 ± 1.012% w/w. Compared to AZS, cross-linked barnyard millet starch had a moisture content that was up to 20% lower than AZS. The Hausner ratio for phosphorylated starch was found to be 1.25, which indicates marked flow property. Similar morphologies could be seen in the alkali-isolated barnyard millet starch and the cross-linked/phosphorylated barnyard millet that was cross-linked using a mixture of sodium sulfate and sodium tripolyphosphate. The modest degree of substitution would have no effect on the surface morphology as shown by the scanning electron microscopic study. The crushing and compacting abilities of modified barnyard millet starch were also improved, but its friability and rate of disintegration were decreased. The whole study revealed that after cross-linking, barnyard millet had good tableting properties and it can be used as an excipient in drug delivery.

6.
Pharmaceutics ; 15(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37631280

ABSTRACT

Natural polymers have attracted significant attention in drug delivery applications due to their biocompatibility, biodegradability, and versatility. However, their surface properties often limit their use as drug delivery vehicles, as they may exhibit poor wettability, weak adhesion, and inadequate drug loading and release. Plasma treatment is a promising surface modification technique that can overcome these limitations by introducing various functional groups onto the natural polymer surface, thus enhancing its physicochemical and biological properties. This review provides a critical overview of recent advances in the plasma modification of natural polymer-based drug delivery systems, with a focus on controllable plasma treatment techniques. The review covers the fundamental principles of plasma generation, process control, and characterization of plasma-treated natural polymer surfaces. It discusses the various applications of plasma-modified natural polymer-based drug delivery systems, including improved biocompatibility, controlled drug release, and targeted drug delivery. The challenges and emerging trends in the field of plasma modification of natural polymer-based drug delivery systems are also highlighted. The review concludes with a discussion of the potential of controllable plasma treatment as a versatile and effective tool for the surface functionalization of natural polymer-based drug delivery systems.

7.
Sci Total Environ ; 901: 165859, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37516175

ABSTRACT

Wastewater is discarded from several sources, including industry, livestock, fertilizer application, and municipal waste. If the disposed of wastewater has not been treated and processed before discharge to the environment, pathogenic microorganisms and toxic chemicals are accumulated in the disposal area and transported into the surface waters. The presence of harmful microbes is responsible for thousands of human deaths related to water-born contamination every year. To be able to take the necessary step and quick action against the possible presence of harmful microorganisms and substances, there is a need to improve the effective speed of identification and treatment of these problems. Biosensors are such devices that can give quantitative information within a short period of time. There have been several biosensors developed to measure certain parameters and microorganisms. The discovered biosensors can be utilized for the detection of axenic and mixed microbial strains from the wastewaters. Biosensors can further be developed for specific conditions and environments with an in-depth understanding of microbial organization and interaction within that community. In this regard, bacteriophage-based biosensors have become a possibility to identify specific live bacteria in an infected environment. This paper has investigated the current scenario of microbial community analysis and biosensor development in identifying the presence of pathogenic microorganisms.

8.
Environ Res ; 232: 116332, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37279800

ABSTRACT

The isolated bacterial strain (Bacillus brevis strain 1 B) showed a maximum tolerated level of 450 mg L-1 of the selected pesticides namely: imidacloprid, fipronil, cypermethrin, and sulfosulfuron. Within 15 days of the experiment, strain 1 B was able to reduce up to 95% of a pesticide mixture (20 mg L-1) in a carbon-deficient medium (minimal medium). The optimal conditions obtained using Response Surface Methodology (RSM) were: inoculums; 2.0 × 107 CFU mL-1, shaking speed; 120 rpm, and pesticide concentration; 80 mg L-1. After 15 days of soil-based bioremediation using strain 1 B, the degradation pattern for imidacloprid, fipronil, cypermethrin, sulfosulfuron, and control was 99, 98.5, 94, 91.67, and 7%, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis was used to determine the intermediate metabolites of cypermethrin with bacterial 1 B as 2-cyclopenten-1-one, 2-methylpyrrolidine, 2-oxonanone, 2-pentenoic acid, 2-penten-1-ol, hexadecanoic acid or palmitic acid, pentadecanoic acid, 3-cyclopentylpropionic acid, and 2-dimethyl. Furthermore, genes encoding aldehyde dehydrogenase (ALDH) and esterase were expressed under stress conditions and connected to pesticide bioremediation. Hence the efficacy of Bacillus brevis (1 B) could be employed for the bioremediation of pesticide mixtures and other toxic substances (dye, polyaromatic hydrocarbon, etc.) from contaminated sites.


Subject(s)
Bacillus , Pesticides , Soil Pollutants , Pesticides/analysis , Bacillus/genetics , Bacillus/metabolism , Oxidoreductases/metabolism , Aldehyde Dehydrogenase/metabolism , Esterases/metabolism , Biodegradation, Environmental , Bacteria/metabolism , Soil Microbiology , Soil Pollutants/analysis
9.
Foods ; 12(11)2023 May 24.
Article in English | MEDLINE | ID: mdl-37297361

ABSTRACT

Calocybe indica, generally referred as milky mushroom, is one of the edible mushroom species suitable for cultivation in the tropical and sub-tropical regions of the world. However, lack of potential high yielding strains has limited its wider adaptability. To overcome this limitation, in this study, the germplasms of C. indica from different geographical regions of India were characterized based on their morphological, molecular and agronomical attributes. Internal transcribed spacers (ITS1 and ITS4)-based PCR amplification, sequencing and nucleotide analysis confirmed the identity of all the studied strains as C. indica. Further, evaluation of these strains for morphological and yield parameters led to the identification of eight high yielding strains in comparison to the control (DMRO-302). Moreover, genetic diversity analysis of these thirty-three strains was performed using ten sequence-related amplified polymorphism (SRAP) markers/combinations. The Unweighted Pair-group Method with Arithmetic Averages (UPGMA)-based phylogenetic analysis categorized the thirty-three strains along with the control into three clusters. Cluster I possesses the maximum number of strains. Among the high yielding strains, high antioxidant activity and phenol content was recorded in DMRO-54, while maximum protein content was observed in DMRO-202 and DMRO-299 as compared with the control strain. The outcome of this study will help the mushroom breeders and growers in commercializing C. indica.

12.
Environ Pollut ; 331(Pt 1): 121864, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37225080

ABSTRACT

The electrocoagulation (EC) and electrooxidation (EO) processes are employed widely as treatment processes for industrial, agricultural, and domestic wastewater. In the present study, EC, EO, and a combination of EC + EO were evaluated as methods of removing pollutants from shrimp aquaculture wastewater. Process parameters for electrochemical processes, including current density, pH, and operation time were studied, and response surface methodology was employed to determine the optimum condition for the treatment. The effectiveness of the combined EC + EO process was assessed by measuring the reduction of targeted pollutants, including dissolved inorganic nitrogen species, total dissolved nitrogen (TDN), phosphate, and soluble chemical oxygen demand (sCOD). Using EC + EO process, more than 87% reduction was achieved for inorganic nitrogen, TDN, and phosphate, while 76.2% reduction was achieved for sCOD. These results demonstrated that the combined EC + EO process provided better treatment performance in removing the pollutants from shrimp wastewater. The kinetic results suggested that the effects of pH, current density, and operation time were significant on the degradation process when using iron and aluminum electrodes. Comparatively, iron electrodes were effective at reducing the half-life (t1/2) of each of the pollutants in the samples. The application of the optimized process parameters on shrimp wastewater could be used for large-scale treatment in aquaculture.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Wastewater , Waste Disposal, Fluid/methods , Electrochemical Techniques/methods , Industrial Waste/analysis , Biological Oxygen Demand Analysis , Electrodes , Aquaculture , Iron
13.
J Environ Manage ; 342: 118159, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37207460

ABSTRACT

Eutrophication is one of the major emerging challenges in aquatic environment. Industrial facilities, including food, textile, leather, and paper, generate a significant amount of wastewater during their manufacturing process. Discharge of nutrient-rich industrial effluent into aquatic systems causes eutrophication, eventually disturbs the aquatic system. On the other hand, algae provide a sustainable approach to treat wastewater, while the resultant biomass may be used to produce biofuel and other valuable products such as biofertilizers. This review aims to provide new insight into the application of algal bloom biomass for biogas and biofertilizer production. The literature review suggests that algae can treat all types of wastewater (high strength, low strength, and industrial). However, algal growth and remediation potential mainly depend on growth media composition and operation conditions such as light intensity, wavelength, light/dark cycle, temperature, pH, and mixing. Further, the open pond raceways are cost-effective compared to closed photobioreactors, thus commercially applied for biomass generation. Additionally, converting wastewater-grown algal biomass into methane-rich biogas through anaerobic digestion seems appealing. Environmental factors such as substrate, inoculum-to-substrate ratio, pH, temperature, organic loading rate, hydraulic retention time, and carbon/nitrogen ratio significantly impact the anaerobic digestion process and biogas production. Overall, further pilot-scale studies are required to warrant the real-world applicability of the closed-loop phycoremediation coupled biofuel production technology.


Subject(s)
Microalgae , Water Purification , Wastewater , Biofuels , Anaerobiosis , Photobioreactors , Biomass
15.
Environ Pollut ; 330: 121680, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37149253

ABSTRACT

The presence of toxic pollutants in wastewater discharge can affect the environment negatively due to presence of the organic and inorganic contaminants. The application of the electrochemical process in wastewater treatment is promising, specifically in treating these harmful pollutants from the aquatic environment. This review focused on recent applications of the electrochemical process for the remediation of such harmful pollutants from aquatic environments. Furthermore, the process conditions that affect the electrochemical process performance are evaluated, and the appropriate treatment processes are suggested according to the presence of organic and inorganic contaminants. Electrocoagulation, electrooxidation, and electro-Fenton applications in wastewater have shown effective performance with high removal rates. The disadvantages of these processes are the formation of toxic intermediate metabolites, high energy consumption, and sludge generation. To overcome such disadvantages combined ecotechnologies can be applied in large-scale wastewater pollutants removal. The combination of electrochemical and biological treatment has gained importance, increased removal performance remarkably, and decreased operational costs. The critical discussion with depth information in this review could be beneficial for wastewater treatment plant operators throughout the world.


Subject(s)
Biological Phenomena , Environmental Pollutants , Water Pollutants, Chemical , Wastewater , Waste Disposal, Fluid , Sewage , Water Pollutants, Chemical/analysis
16.
ACS Omega ; 8(13): 11750-11767, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37033860

ABSTRACT

The chemical modifications of starch granules have been adopted to improve the characteristics, viz., paste clarity, resistant starch content, thermal stability, and so forth. The modified starch has been applied as a biopolymer in developing various preparations of food, nutraceutical, and pharmaceutical importance. The present work is focused on phosphorylation of alkali extracted mandua starch for improving digestion resistibility. The phosphorylation of mandua starch extracted from grains of Eleusine coracana (family Poaceae) was carried out by sodium tripolyphosphate/sodium trimetaphosphate at alkaline pH. After chemical treatment of mandua starch, the resistant starch (RS) content was increased significantly. The digestibility of chemically modified starch (CMS) was decreased down after treating by the phosphorylation process. The digestibility of CMS and alkali extracted mandua starch (AMS) in simulated intestinal fluid was found to be 32.64 ± 1.98% w/w and 61.12 ± 2.54% w/w, respectively. After chemical modification of mandua starch, a decrement was observed in amylose content, water-binding capacity, and swelling power. In the three-stage decomposition pattern of CMS studied by thermal gravimetric analysis, the significant changes in decomposition behavior also affirmed the impact of cross-linking in the improvement of stability of internal structure and resistibility of starch. In Fourier transform infrared (FTIR), the formation of the P=O bond was observed in CMS at 1250 cm-1. The acute and sub-acute toxicity studies in terms of behavioral, haematological, and enzymological parameters for CMS were not different significantly from AMS and control (p > 0.05). The cellular architecture of the liver and the kidney were found normal after consumption of CMS. The results revealed that significant increment in RS fraction occurred after cross-linking of mandua starch. The prepared starch may be applied in developing various formulations of food and pharmaceutical importance.

17.
J Hazard Mater ; 452: 131287, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37003005

ABSTRACT

Methomyl is a widely used carbamate pesticide, which has adverse biological effects and poses a serious threat to ecological environments and human health. Several bacterial isolates have been investigated for removing methomyl from environment. However, low degradation efficiency and poor environmental adaptability of pure cultures severely limits their potential for bioremediation of methomyl-contaminated environment. Here, a novel microbial consortium, MF0904, can degrade 100% of 25 mg/L methomyl within 96 h, an efficiency higher than that of any other consortia or pure microbes reported so far. The sequencing analysis revealed that Pandoraea, Stenotrophomonas and Paracoccus were the predominant members of MF0904 in the degradation process, suggesting that these genera might play pivotal roles in methomyl biodegradation. Moreover, five new metabolites including ethanamine, 1,2-dimethyldisulfane, 2-hydroxyacetonitrile, N-hydroxyacetamide, and acetaldehyde were identified using gas chromatography-mass spectrometry, indicating that methomyl could be degraded firstly by hydrolysis of its ester bond, followed by cleavage of the C-S ring and subsequent metabolism. Furthermore, MF0904 can successfully colonize and substantially enhance methomyl degradation in different soils, with complete degradation of 25 mg/L methomyl within 96 and 72 h in sterile and nonsterile soil, respectively. Together, the discovery of microbial consortium MF0904 fills a gap in the synergistic metabolism of methomyl at the community level and provides a potential candidate for bioremediation applications.


Subject(s)
Methomyl , Pesticides , Humans , Methomyl/chemistry , Methomyl/metabolism , Biodegradation, Environmental , Pesticides/metabolism , Bacteria , Soil , Metabolic Networks and Pathways , Microbial Consortia
18.
J Agric Food Chem ; 71(17): 6650-6661, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37084257

ABSTRACT

Glyphosate is one of the most widely used herbicides worldwide. Unfortunately, the continuous use of glyphosate has resulted in serious environmental contamination and raised public concern about its impact on human health. In our previous study, Chryseobacterium sp. Y16C was isolated and characterized as an efficient degrader that can completely degrade glyphosate. However, the biochemical and molecular mechanisms underlying its glyphosate biodegradation ability remain unclear. In this study, the physiological response of Y16C to glyphosate stimulation was characterized at the cellular level. The results indicated that, in the process of glyphosate degradation, Y16C induced a series of physiological responses in the membrane potential, reactive oxygen species levels, and apoptosis. The antioxidant system of Y16C was activated to alleviate the oxidative damage caused by glyphosate. Furthermore, a novel gene, goW, was expressed in response to glyphosate. The gene product, GOW, is an enzyme that catalyzes glyphosate degradation, with putative structural similarities to glycine oxidase. GOW encodes 508 amino acids, with an isoelectric point of 5.33 and a molecular weight of 57.2 kDa, which indicates that it is a glycine oxidase. GOW displays maximum enzyme activity at 30 °C and pH 7.0. Additionally, most of the metal ions exhibited little influence on the enzyme activity except for Cu2+. Finally, with glyphosate as the substrate, the catalytic efficiency of GOW was higher than that of glycine, although opposite results were observed for the affinity. Taken together, the current study provides new insights to deeply understand and reveal the mechanisms of glyphosate degradation in bacteria.


Subject(s)
Chryseobacterium , Herbicides , Humans , Chryseobacterium/genetics , Chryseobacterium/metabolism , Glycine/metabolism , Bacteria/metabolism , Herbicides/pharmacology , Herbicides/metabolism , Glyphosate
19.
Environ Res ; 226: 115530, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36863653

ABSTRACT

Water quality is deteriorating continuously as increasing levels of toxic inorganic and organic contaminants mostly discharging into the aquatic environment. Removal of such pollutants from the water system is an emerging research area. During the past few years use of biodegradable and biocompatible natural additives has attracted considerable attention to alleviate pollutants from wastewater. The chitosan and its composites emerged as a promising adsorbents due to their low price, abundance, amino, and hydroxyl groups, as well as their potential to remove various toxins from wastewater. However, a few challenges associated with its practical use include lack of selectivity, low mechanical strength, and solubility in acidic medium. Therefore, several approaches for modification have been explored to improve the physicochemical properties of chitosan for wastewater treatment. Chitosan nanocomposites found effective for the removal of metals, pharmaceuticals, pesticides, microplastics from the wastewaters. Nanoparticle doped with chitosan in the form of nano-biocomposites has recently gained much attention and proven a successful tool for water purification. Hence, applying chitosan-based adsorbents with numerous modifications is a cutting-edge approach to eliminating toxic pollutants from aquatic systems with the global aim of making potable water available worldwide. This review presents an overview of distinct materials and methods for developing novel chitosan-based nanocomposites for wastewater treatment.


Subject(s)
Chitosan , Environmental Pollutants , Water Pollutants, Chemical , Water Purification , Adsorption , Chitosan/chemistry , Plastics , Wastewater , Water Pollutants, Chemical/analysis , Water Purification/methods
20.
Chemosphere ; 326: 138390, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36935058

ABSTRACT

Nicosulfuron is among the sulfonylurea herbicides that are widely used to control annual and perennial grass weeds in cornfields. However, nicosulfuron residues in the environment are likely to cause long-lasting harmful environmental and biological effects. Nicosulfuron degrades via photo-degradation, chemical hydrolysis, and microbial degradation. The latter is crucial for pesticide degradation and has become an essential strategy to remove nicosulfuron residues from the environment. Most previous studies have focused on the screening, degradation characteristics, and degradation pathways of biodegrader microorganisms. The isolated nicosulfuron-degrading strains include Bacillus, Pseudomonas, Klebsiella, Alcaligenes, Rhodopseudomonas, Ochrobactrum, Micrococcus, Serratia, Penicillium, Aspergillus, among others, all of which have good degradation efficiency. Two main intermediates, 2-amino-4,6-dimethoxypyrimidine (ADMP) and 2-aminosulfonyl-N,N-dimethylnicotinamide (ASDM), are produced during microbial degradation and are derived from the C-N, C-S, and S-N bond breaks on the sulfonylurea bridge, covering almost every bacterial degradation pathway. In addition, enzymes related to the degradation of nicosulfuron have been identified successively, including the manganese ABC transporter (hydrolase), Flavin-containing monooxygenase (oxidase), and E3 (esterase). Further in-depth studies based on molecular biology and genetics are needed to elaborate on their role in the evolution of novel catabolic pathways and the microbial degradation of nicosulfuron. To date, few reviews have focused on the microbial degradation and degradation mechanisms of nicosulfuron. This review summarizes recent advances in nicosulfuron degradation and comprehensively discusses the potential of nicosulfuron-degrading microorganisms for bioremediating contaminated environments, providing a reference for further research development on nicosulfuron biodegradation in the future.


Subject(s)
Herbicides , Pyridines , Biodegradation, Environmental , Pyridines/chemistry , Sulfonylurea Compounds/chemistry , Herbicides/chemistry , Metabolic Networks and Pathways
SELECTION OF CITATIONS
SEARCH DETAIL
...