Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Rev Food Sci Nutr ; 62(4): 1003-1034, 2022.
Article in English | MEDLINE | ID: mdl-33086895

ABSTRACT

Tomato, a widely consumed vegetable crop, offers a real potential to combat human nutritional deficiencies. Tomatoes are rich in micronutrients and other bioactive compounds (including vitamins, carotenoids, and minerals) that are known to be essential or beneficial for human health. This review highlights the current state of the art in the molecular understanding of the nutritional aspects, conventional and molecular breeding efforts, and biofortification studies undertaken to improve the nutritional content and quality of tomato. Transcriptomics and metabolomics studies, which offer a deeper understanding of the molecular regulation of the tomato's nutrients, are discussed. The potential uses of the wastes from the tomato processing industry (i.e., the peels and seed extracts) that are particularly rich in oils and proteins are also discussed. Recent advancements with CRISPR/Cas mediated gene-editing technology provide enormous opportunities to enhance the nutritional content of agricultural produces, including tomatoes. In this regard, genome editing efforts with respect to biofortification in the tomato plant are also discussed. The recent technological advancements and knowledge gaps described herein aim to help explore the unexplored nutritional potential of the tomato.


Subject(s)
Malnutrition , Solanum lycopersicum , Antioxidants , Carotenoids , Gene Editing , Humans , Solanum lycopersicum/genetics
2.
Int J Mol Sci ; 22(13)2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34203477

ABSTRACT

Pandanus amaryllifoliusRoxb. accumulates the highest concentration of the major basmati aroma volatile 2-acetyl-1-pyrroline (2AP) in the plant kingdom. The expression of 2AP is correlated with the presence of a nonfunctional betaine aldehyde dehydrogenase 2(BADH2) in aromatic rice and other plant species. In the present study, a full-length BADH2 sequence was reconstructed from the transcriptome data of leaf tissue from P. amaryllifolius seedlings. Based on this sequence, a 1509 bp coding sequence was defined that encoded a 54 kD PaBADH2protein. This revealed the presence of a full-length BADH2 protein in P. amaryllifolius. Moreover, quantitative real-time PCR analysis, combined with BADH2 enzyme activity, confirmed the expression and functionality of the PaBADH2 protein. To understand the apparent structural variation, docking analysis was carried out in which protein showed a good affinity with both betaine aldehyde (BAD) and γ-aminobutyraldehyde (GAB-ald) as substrates. Overall, the analysis showed the presence of a functional BADH2, along with substantial 2AP synthesis (4.38 ppm). Therefore, we conclude that unlike all other plants studied to date, 2AP biosynthesis in P. amaryllifolius is not due to the inactivation of BADH2.


Subject(s)
Betaine-Aldehyde Dehydrogenase/metabolism , Pandanaceae/enzymology , Aldehydes/metabolism , Betaine-Aldehyde Dehydrogenase/genetics , Odorants , Pandanaceae/genetics , Pandanaceae/metabolism , Pyrroles/metabolism , Real-Time Polymerase Chain Reaction
3.
J Biotechnol ; 324: 103-111, 2020 Dec 20.
Article in English | MEDLINE | ID: mdl-33007348

ABSTRACT

Jujube (Ziziphus jujubaMill.), a deciduous tree, is well known for its medicinal and nutritional values. Being an extremophile, it has an excellent capability to survive under arid conditions with limited water availability. In this regard, studying the role of water transport regulating proteins such as Aquaporins (AQPs) in jujube is of great importance. Aquaporins, channel-forming proteins are known to have a significant role in the transport of water and many other small solutes in plants. In the present study, computational approaches have identified 36 AQPs, which comprised of 12 NIPs (Nodulin 26-like intrinsic proteins), 10 PIPs (Plasma membrane intrinsic proteins), 10 TIPs (Tonoplast intrinsic proteins), 3 SIPs (Small intrinsic proteins), and 1 XIP (uncharacterized intrinsic protein). Conserved features of AQPs like asparagines-proline-alanine (NPA) amino acid motifs, aromatic/arginine (ar/R) selectivity filters, and Frogger's residues, having a significant role in solute specificity and transport, were also predicted. Homology-based tertiary (3D) structures of AQPS were also resolved using various tools, and subsequently, pore-lining residues have been identified using the 3D structures. The information of pore morphology, along with the conserved features provided through this work, will be helpful to predict solute specificity of AQPs. Analysis of transcriptomic data revealed the tissue-specific or ubiquitous expression of several AQPs in different tissues of jujube. Interestingly, TIP3-1 was found to have fruit specific expression whereas most of the AQPs have a relatively low expression. Based on the present study and previous reports, TIP3s seems to have a significant role in seed desiccation processes. The findings presented here provide pivotal insights into the functions of extremophile specific AQPs, to better understand the role of AQPs and, subsequently, the stress tolerance mechanism in jujube.


Subject(s)
Aquaporins , Plants, Medicinal , Ziziphus , Aquaporins/genetics , Fruit/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Vacuoles/metabolism , Ziziphus/metabolism
4.
Plants (Basel) ; 9(6)2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32604788

ABSTRACT

Aquaporins (AQPs) play a pivotal role in the cellular transport of water and many other small solutes, influencing many physiological and developmental processes in plants. In the present study, extensive bioinformatics analysis of AQPs was performed in Aquilegia coerulea L., a model species belonging to basal eudicots, with a particular focus on understanding the AQPs role in the developing petal nectar spur. A total of 29 AQPs were identified in Aquilegia, and their phylogenetic analysis performed with previously reported AQPs from rice, poplar and Arabidopsis depicted five distinct subfamilies of AQPs. Interestingly, comparative analysis revealed the loss of an uncharacterized intrinsic protein II (XIP-II) group in Aquilegia. The absence of the entire XIP subfamily has been reported in several previous studies, however, the loss of a single clade within the XIP family has not been characterized. Furthermore, protein structure analysis of AQPs was performed to understand pore diversity, which is helpful for the prediction of solute specificity. Similarly, an AQP AqcNIP2-1 was identified in Aquilegia, predicted as a silicon influx transporter based on the presence of features such as the G-S-G-R aromatic arginine selectivity filter, the spacing between asparagine-proline-alanine (NPA) motifs and pore morphology. RNA-seq analysis showed a high expression of tonoplast intrinsic proteins (TIPs) and plasma membrane intrinsic proteins (PIPs) in the developing petal spur. The results presented here will be helpful in understanding the AQP evolution in Aquilegia and their expression regulation, particularly during floral development.

5.
Int J Mol Sci ; 21(11)2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32516948

ABSTRACT

Over the past decades, numerous efforts were made towards the improvement of cereal crops mostly employing traditional or molecular breeding approaches. The current scenario made it possible to efficiently explore molecular understanding by targeting different genes to achieve desirable plants. To provide guaranteed food security for the rising world population particularly under vulnerable climatic condition, development of high yielding stress tolerant crops is needed. In this regard, technologies upgradation in the field of genome editing looks promising. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 is a rapidly growing genome editing technique being effectively applied in different organisms, that includes both model and crop plants. In recent times CRISPR/Cas9 is being considered as a technology which revolutionized fundamental as well as applied research in plant breeding. Genome editing using CRISPR/Cas9 system has been successfully demonstrated in many cereal crops including rice, wheat, maize, and barley. Availability of whole genome sequence information for number of crops along with the advancement in genome-editing techniques provides several possibilities to achieve desirable traits. In this review, the options available for crop improvement by implementing CRISPR/Cas9 based genome-editing techniques with special emphasis on cereal crops have been summarized. Recent advances providing opportunities to simultaneously edit many target genes were also discussed. The review also addressed recent advancements enabling precise base editing and gene expression modifications. In addition, the article also highlighted limitations such as transformation efficiency, specific promoters and most importantly the ethical and regulatory issues related to commercial release of novel crop varieties developed through genome editing.


Subject(s)
Edible Grain/genetics , Gene Editing , Genome, Plant , Genomics , CRISPR-Cas Systems , Crops, Agricultural/genetics , Genomics/methods , Plants, Genetically Modified , Stress, Physiological , Transformation, Genetic
6.
Plants (Basel) ; 8(5)2019 May 14.
Article in English | MEDLINE | ID: mdl-31091747

ABSTRACT

Induced mutagenesis is one of the most effective strategies for trait improvement without altering the well-optimized genetic background of the cultivars. In this review, several currently accessible methods such as physical, chemical and insertional mutagenesis have been discussed concerning their efficient exploration for the tomato crop improvement. Similarly, challenges for the adaptation of genome-editing, a newly developed technique providing an opportunity to induce precise mutation, have been addressed. Several efforts of genome-editing have been demonstrated in tomato and other crops, exploring its effectiveness and convenience for crop improvement. Descriptive data compiled here from such efforts will be helpful for the efficient exploration of technological advances. However, uncertainty about the regulation of genome-edited crops is still a significant concern, particularly when timely trait improvement in tomato cultivars is needed. In this regard, random approaches of induced mutagenesis are still promising if efficiently explored in breeding applications. Precise identification of casual mutation is a prerequisite for the molecular understanding of the trait development as well as its utilization for the breeding program. Recent advances in sequencing techniques provide an opportunity for the precise detection of mutagenesis-induced sequence variations at a large scale in the genome. Here, we reviewed several novel next-generation sequencing based mutation mapping approaches including Mutmap, MutChromeSeq, and whole-genome sequencing-based mapping which has enormous potential to accelerate the mutation breeding in tomato. The proper utilization of the existing well-characterized tomato mutant resources combined with novel mapping approaches would inevitably lead to rapid enhancement of tomato quality and yield. This article provides an overview of the principles and applications of mutagenesis approaches in tomato and discusses the current progress and challenges involved in tomato mutagenesis research.

7.
Mol Biol Rep ; 41(12): 8261-71, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25227523

ABSTRACT

We investigated DNA methylation and polymorphism in the methylated DNA using AFLP based methylation-sensitive amplification polymorphism (MS-AFLP) markers in ecotypes of Jatropha curcas L. growing in similar and different geo-ecological conditions. Three ecotypes growing in different geo-ecological conditions with environmental heterogeneity (Group-1) and five ecotypes growing in similar environmental conditions (Group-2) were assessed. In ecotypes growing in group-1, 44.32 % DNA was methylated and of which 93.59 % DNA was polymorphic. While in group-2, 32.27 % DNA was methylated, of which 51.64 % DNA was polymorphic. In site 1 and site 2 of group-1, overall methylation was 18.94 and 22.44 % respectively with difference of 3.5 %, while overall polymorphism was 41.14 and 39.23 % with a difference of 1.91 %. In site 1 and site 2 of group-2, overall methylation was 24.68 and 24.18 % respectively with difference of 0.5 %, while overall polymorphism was 12.19 and 12.65 % with a difference of 0.46 %. The difference of methylation percentage and percentage of methylation polymorphism throughout the genome of J. curcas at site 1 and 2 of group-1 is higher than that of J. curcas at site 1 and 2 of group-2. These results correlated the physico-chemical properties of soil at these sites. The variations of physico-chemical properties of soil at Chorwadla (site 1 in group-1 and site 2 in group-2) compared to the soil at Brahmapur (site 2 in group-1) is higher than that of soil at Neswad (site 1 in group-2). The study suggests that these homologous nucleotide sequences probably play important role in ecotype adaptation to environmental heterogeneity by creating epiallelic variations hence in evolution of ecotypes/clines or forms of species showing phenotypic/genotypic differences in different geographical areas.


Subject(s)
Amplified Fragment Length Polymorphism Analysis/methods , DNA Methylation , Jatropha/genetics , Polymorphism, Genetic , Adaptation, Biological , Ecotype , Genome, Plant , Soil/chemistry
8.
Mol Biotechnol ; 54(2): 412-25, 2013 Jun.
Article in English | MEDLINE | ID: mdl-22763562

ABSTRACT

The pathogenesis-related proteins have a broad spectrum of roles, ranging from seed germination, development to resistance. The PR-10 is a multigene family differing from other PR proteins in being intracellular, small and acidic with similar 3D structures. We have isolated JcPR-10a cDNA with an ORF of 483 bp from J. curcas, an important biofuel crop grown in the wastelands of India. JcPR-10a gets clustered with dicots in phylogenetic tree. The genomic organisation analysis of JcPR-10a revealed the presence of an intron at conserved 185 bp position. Transcript expression of JcPR-10a was upregulated in response to different stimuli such as NaCl, salicylic acid, methyl jasmonate and M. phaseolina. In response to SA and Macrophomina the transcript was found increased at 48 h, however, in case of NaCl and MeJa a strong induction was observed at 12 h which decreased at 48 h. We first time report the transcript up regulation of PR-10 gene by Macrophomina, a pathogen causing collar rot in Jatropha. The recombinant E. coli cells showed better growth in LB medium supplemented with NaCl, whereas growth of recombinant cells was inhibited in LB medium supplemented with KCl, mannitol, sorbitol, methyl jasmonate and salicylic acid. The JcPR-10a protein was overexpressed in E. coli cells, and was purified to homogeneity, the purified protein exhibited RNase and DNase activity. Furthermore, the protein also showed antifungal activity against Macrophomina, indicating that JcPR-10a can serve as an important candidate to engineer stress tolerance in Jatropha as well as other plants susceptible to collar rot by Macrophomina.


Subject(s)
Antifungal Agents/metabolism , Jatropha/genetics , Plant Proteins/genetics , Ribonucleases/genetics , Acetates/metabolism , Amino Acid Sequence , Cloning, Molecular/methods , Cyclopentanes/metabolism , DNA, Complementary/genetics , DNA, Complementary/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Genes, Plant , India , Introns , Jatropha/metabolism , Molecular Sequence Data , Multigene Family/genetics , Oxylipins/metabolism , Phylogeny , Plant Proteins/metabolism , Ribonucleases/metabolism , Salicylic Acid/metabolism , Sequence Alignment , Sodium Chloride/metabolism , Stress, Physiological/genetics , Up-Regulation
9.
Gene ; 508(1): 125-9, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22967874

ABSTRACT

The present study assesses the changes in DNA methylation in leaf and root tissues of Jatropha curcas L., induced by salinity stress using methylation sensitive amplification polymorphism (MSAP) markers. Seedlings of 21 days (d) grown under controlled conditions were subjected to 0­100 mM salinity treatment for 24 h (1 d). Immediate changes in DNA methylation and polymorphism in methylated DNA in whole genome of both leaves and roots were assessed using 10 selective combinations of MSAP primers. In root and leaves 70.06% and 57.89% methylation was observed respectively. Similarly 67.22% and 71.21% polymorphism was observed in methylated DNA from root and leaf tissues respectively. Compared with control, the percentage of methylation and methylation polymorphism in roots of plants under different dosages of salinity was found in the order of 50 mM < 25 mM = 100 mM < 75 mM and 75 mM < 25 mM < 50 mM < 100 mM respectively. Similarly percentage of methylation and methylation polymorphism in leaves of plants treated with different levels of salinity was found in order of 75 mM < 25 mM < 50 mM < 100 mM and 50 mM < 25 mM < 100 mM < 75 mM respectively. The MSAP analysis showed that under salt stress homologous nucleotide sequences in genome from control and salt treated plants of J. curcas showed different patterns of methylation; which suggest that these fragments probably play an important role to induce immediate adaptive responses in Jatropha under salinity stress.


Subject(s)
DNA Methylation , Jatropha/genetics , Plant Leaves/genetics , Plant Roots/genetics , Polymorphism, Genetic/genetics , Salt Tolerance/genetics , Stress, Physiological/genetics , Amplified Fragment Length Polymorphism Analysis , DNA, Plant/genetics , Salinity
SELECTION OF CITATIONS
SEARCH DETAIL
...