Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 256(Pt 2): 128472, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38029906

ABSTRACT

Bioactive oligosaccharides with the potential to improve human health, especially in modulating gut microbiota via prebiotic activity, are available from few natural sources. This work uses polysaccharide oxidative cleavage to generate oligosaccharides from beet pulp, an agroindustry by-product. A scalable membrane filtration approach was applied to purify the oligosaccharides for subsequent in vitro functional testing. The combined use of nano-LC/Chip Q-TOF MS and UHPLC/QqQ MS allowed the evaluation of the oligosaccharide profile and their monosaccharide complexity. A final product containing roughly 40 g of oligosaccharide was obtained from 475 g of carbohydrates. Microbiological bioactivity assays indicated that the product obtained herein stimulated desirable commensal gut bacteria. This rapid, reproducible, and scalable method represents a breakthrough in the food industry for generating potential prebiotic ingredients from common plant by-products at scale. INDUSTRIAL RELEVANCE: This work proposes an innovative technology based on polysaccharide oxidative cleavage and multi-stage membrane purification to produce potential prebiotic oligosaccharides from renewable sources. It also provides critical information to evidence the prebiotic potential of the newly generated oligosaccharides on the growth promotion ability of representative probiotic strains of bifidobacteria and lactobacilli.


Subject(s)
Beta vulgaris , Gastrointestinal Microbiome , Humans , Oligosaccharides/pharmacology , Polysaccharides/pharmacology , Carbohydrates , Prebiotics
2.
Food Funct ; 12(18): 8507-8521, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34308934

ABSTRACT

2'-Fucosyllactose (2'-FL) is one of the predominant oligosaccharides found in human milk and has several well-established beneficial effects in the host. It has previously been shown that 2'-FL can improve the metabolic phenotype in high-fat (HF)-fed mice. Here we investigated whether dietary supplementation with 2'-FL was associated with improved intestinal barrier integrity, signaling in the vagal afferent pathway and cognitive function. Mice were fed either a low-fat (LF, 10% fat per kcal) or HF (45% fat per kcal) diet with or without supplementation of 2'-FL (10% w/w) in the diet for 8 weeks. Body weight, energy intake, fat and lean mass, intestinal permeability (ex vivo in Ussing chambers), lipid profiles, gut microbiome and microbial metabolites, and cognitive functions were measured. Vagal afferent activity was measured via immunohistochemical detection of c-Fos protein in the brainstem in response to peripheral administration of cholecystokinin (CCK). 2'-FL significantly attenuated the HF-induced increase in fat mass and energy intake. 2'-FL significantly reduced intestinal permeability and significantly increased expression of interleukin (IL)-22, a cytokine known for its protective role in the intestine. Additionally, 2'-FL led to changes in the gut microbiota composition and in the associated microbial metabolites. Signaling in the vagal afferent pathway was improved but there was no effect on cognitive function. In conclusion, 2'-FL supplementation improved the metabolic profiles, gut barrier integrity, lipid metabolism and signaling in the vagal afferent pathway. These findings support the utility of 2'-FL in the control of gut barrier function and metabolic homeostasis under a metabolic challenge.


Subject(s)
Afferent Pathways/physiology , Brain-Gut Axis/physiology , Dietary Supplements , Intestinal Mucosa/physiology , Milk, Human/chemistry , Trisaccharides/administration & dosage , Vagus Nerve/physiology , Animals , Bacteria/classification , Bacteria/growth & development , Bacteria/metabolism , Brain/metabolism , Cecum/metabolism , Cecum/microbiology , Diet, Fat-Restricted , Diet, High-Fat , Gastrointestinal Microbiome , Lipid Metabolism , Male , Metabolome , Mice , Mice, Inbred C57BL , Signal Transduction , Trisaccharides/blood
3.
J Agric Food Chem ; 68(51): 15208-15215, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33296195

ABSTRACT

N-Glycans are structurally similar to human milk oligosaccharides, the gold standard prebiotics for infants. Bovine milk N-glycans released by endo-ß-N-acetylglucosaminidase (EndoBI-1) were shown to have similar prebiotic selectivity as human milk oligosaccharides, explaining the interest for N-glycan recovery for use as prebiotics. Industrial thermal treatments such as high-temperature short-time (HTST) and ultra-high-temperature (UHT) might favor the enzymatic deglycosylation of N-glycans through promoting protein denaturation. We investigated the effects of HTST (72 °C for 15 s) and UHT (135 °C for 3 s) on N-glycan release from bovine colostrum glycoproteins by nonimmobilized and amino-immobilized EndoBI-1. A total of 104 N-glycans including isomers/anomers were identified by high-resolution mass spectrometry. In both EndoBI-1 forms, HTST increased the release of N-glycans; however, the impact of UHT on releasing N-glycans was comparable to the nonthermal treatment. Although the amino-immobilized enzyme similarly released neutral N-glycans as the free form, it released fewer sialylated and fucosylated N-glycans.


Subject(s)
Acetylglucosaminidase/chemistry , Colostrum/chemistry , Glycoproteins/chemistry , Polysaccharides/chemistry , Animals , Biocatalysis , Cattle , Female , Hot Temperature , Mass Spectrometry , Molecular Structure
4.
Food Funct ; 11(9): 7661-7680, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32897284

ABSTRACT

The objective of this study was to understand the possible interactions between whey protein and cranberry juice after processing that could impact either the protein digestibility or the bioaccessibility of cranberry antioxidants using an in vitro gastrointestinal digestion model. Whey protein isolate (27 or 54 mg of protein per mL) was dissolved in either cranberry juice or water and used as a model beverage system. Beverages were either non-processed or underwent thermal (low: 85 °C for 1 min, medium: 99 °C for 10 s and long: 99 °C for 5 min) or high-pressure processing (600 MPa for 4 min). After processing, beverages underwent oral (30 s), gastric (2 h) and small intestinal (2 h) digestion. During in vitro digestion, protein hydrolysis was monitored by the o-phthalaldehyde (OPA) assay, SDS-PAGE, soluble amino acid content, and pepidomic profiling using Orbitrap mass-spectrometry. Antioxidant capacity was measured with Ferric Reducing Antioxidant Power (FRAP) and 2,2-azinobis (3-ethlybenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging assays before and during in vitro digestion. Whey protein isolate dissolved in water had a significantly higher (p < 0.05) degree of hydrolysis and soluble amino acid content during small intestinal digestion compared to protein dissolved in cranberry juice, suggesting that cranberry juice had an effect on how protein was hydrolyzed during digestion. In all processing treatments except for long thermal processing, water and cranberry juice protein solutions had similar ß-lactoglobulin digestibility (p > 0.05), suggesting that the cranberry juice interactions with the protein do not significantly decrease ß-lactoglobulin resistance to hydrolysis by pepsin. Peptide formation also differed between whey protein dissolved in either water or juice. Cranberry juice protein solutions showed a slightly lower peptide count compared with whey protein isolate dissolved in water. Antioxidant bioaccessibility by FRAP during gastric digestion significantly increased in cranberry juice with addition of whey protein isolate. This trend might indicate a protective effect of whey protein isolate to cranberry antioxidant compounds.


Subject(s)
Antioxidants/analysis , Digestion , Fruit and Vegetable Juices , Gastrointestinal Tract/physiology , Vaccinium macrocarpon , Whey Proteins/metabolism , Amino Acids/analysis , Benzothiazoles/chemistry , Chromatography, Ion Exchange , Electrophoresis, Polyacrylamide Gel , Fluorescence Recovery After Photobleaching , Food Handling , Models, Biological , Peptides/analysis , Proteolysis , Solubility , Sulfonic Acids/chemistry , Temperature , Whey Proteins/chemistry
5.
NPJ Sci Food ; 3: 4, 2019.
Article in English | MEDLINE | ID: mdl-31304276

ABSTRACT

Peptidomics and glycomics are recently established disciplines enabling researchers to characterize functional characteristics of foods at a molecular level. Milk-derived bioactive peptides and oligosaccharides have garnered both scientific and commercial interest because they possess unique functional properties, such as anti-hypertensive, immunomodulatory and prebiotic activities; therefore, the objective of this work was to employ peptidomic and glycomic tools to identify and measure relative and absolute quantities of peptides and oligosaccharides in widely consumed dairy products. Specifically, we identified up to 2117 unique peptides in 10 commercial dairy products, which together represent the most comprehensive peptidomic profiling of dairy milk in the literature to date. The quantity of peptides, measured by ion-exchange chromatography, varied between 60 and 130 mg/L among the same set of dairy products, which the majority originated from caseins, and the remaining from whey proteins. A recently published bioactive peptide database was used to identify 66 unique bioactive peptides in the dataset. In addition, 24 unique oligosaccharide compositions were identified in all the samples by nano LC Chip QTOF. Neutral oligosaccharides were the most abundant class in all samples (66-91.3%), followed by acidic (8.6-33.7%), and fucosylated oligosaccharides (0-4.6%). Variation of total oligosaccharide concentration ranged from a high of 65.78 to a low of 24.82 mg/L. Importantly, characterizing bioactive peptides and oligosaccharides in a wider number of dairy products may lead to innovations that go beyond the traditional vision of dairy components used for nutritional purposes but that will rather focus on improving human health.

6.
J Food Sci Technol ; 52(4): 2013-22, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25829581

ABSTRACT

Oyster mushroom samples were dried under selected convective, microwave-convective drying conditions in a recirculatory hot-air dryer and microwave assisted hot-air dryer (2.45 GHz, 1.5 kW) respectively. Only falling rate period and no constant rate period, was exhibited in both the drying technique. The experimental moisture loss data were fitted to selected semi-theoretical thin-layer drying equations. The mathematical models were compared according to three statistical parameters, i.e. correlation coefficient, reduced chi-square and residual mean sum of squares. Among all the models, Midilli et al. model was found to have the best fit as suggested by 0.99 of square correlation coefficient, 0.000043 of reduced-chi square and 0.0023 of residual sum of square. The highest effective moisture diffusivity varying from 10.16 × 10(-8) to 16.18 × 10(-8) m(2)/s over the temperature range was observed in microwave-convective drying at an air velocity of 1.5 m/s and the activation energy was calculated to be 16.95 kJ/mol. The above findings can aid to select the most suitable operating conditions, so as to design drying equipment accordingly.

SELECTION OF CITATIONS
SEARCH DETAIL
...