Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Bio Med Chem Au ; 3(2): 174-188, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37101813

ABSTRACT

ß-lactamase production with vast catalytic divergence in the pathogenic strain limits the antibiotic spectrum in the clinical environment. Class A carbapenemase shares significant sequence similarities, structural features, and common catalytic mechanisms although their resistance spectrum differs from class A ß-lactamase in carbapenem and monobactam hydrolysis. In other words, it limited the antibiotic treatment option against infection, causing carbapenemase-producing superbugs. Ftu-1 is a class A ß-lactamase expressed by the Francisella tularensis strain, a potent causative organism of tularemia. The chromosomally encoded class A ß-lactamase shares two conserved cysteine residues, a common characteristic of a carbapenemase, and a distinctive class in the phylogenetic tree. Complete biochemical and biophysical characterization of the enzyme was performed to understand the overall stability and environmental requirements to perform optimally. To comprehend the enzyme-drug interaction and its profile toward various chemistries of ß-lactam and ß-lactamase inhibitors, comprehensive kinetic and thermodynamic analyses were conducted using various ß-lactam drugs. The dynamic property of Ftu-1 ß-lactamase was also predicted using molecular dynamics (MD) simulation to compare its loop flexibility and ligand binding with other related class A ß-lactamases. Overall, this study fosters a comprehensive understanding of Ftu-1, proposed to be an intermediate class by characterizing its kinetic profiling, stability by biochemical and biophysical methodologies, and susceptibility profiling. This understanding would be beneficial for the design of new-generation therapeutics.

2.
J Agric Food Chem ; 69(49): 14995-15004, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34855377

ABSTRACT

Angiotensin converting enzyme-I (ACE-I) is a key therapeutic target of the renin-angiotensin-aldosterone system (RAAS), the central pathway of blood pressure regulation. Food-derived peptides with ACE-I inhibitory activities are receiving significant research attention. However, identification of ACE-I inhibitory peptides from different food proteins is a labor-intensive, lengthy, and expensive process. For successful identification of potential ACE-I inhibitory peptides from food sources, a machine learning and structural bioinformatics-based web server has been developed and reported in this study. The web server can take input in the FASTA format or through UniProt ID to perform the in silico gastrointestinal digestion and then screen the resulting peptides for ACE-I inhibitory activity. This unique platform provides elaborated structural and functional features of the active peptides and their interaction with ACE-I. Thus, it can potentially enhance the efficacy and reduce the time and cost in identifying and characterizing novel ACE-I inhibitory peptides from food proteins. URL: http://hazralab.iitr.ac.in/ahpp/index.php.


Subject(s)
Antihypertensive Agents , Peptidyl-Dipeptidase A , Angiotensin-Converting Enzyme Inhibitors , Angiotensins , Machine Learning , Peptides
3.
Front Microbiol ; 12: 710291, 2021.
Article in English | MEDLINE | ID: mdl-34690953

ABSTRACT

The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis calls for an immediate search for novel treatment strategies. Recently, BlaC, the principal beta-lactamase of Mycobacterium tuberculosis, was recognized as a potential therapeutic target. BlaC belongs to Ambler class A, which is generally susceptible to the beta-lactamase inhibitors currently used in clinics: tazobactam, sulbactam, and clavulanate. Alterations at Ser130 in conserved SDN loop confer resistance to mechanism-based inhibitors (MBIs) commonly observed in various clinical isolates. The absence of clinical evidence of S130G conversion in M. tuberculosis draws our attention to build laboratory mutants of S130G and S130A of BlaC. The study involving steady state, inhibition kinetics, and fluorescence microscopy shows the emergence of resistance against MBIs to the mutants expressing S130G and S130A. To understand the molecular reasoning behind the unavailability of such mutation in real life, we have used circular dichroism (CD) spectroscopy, differential scanning calorimetry (DSC), molecular dynamics (MD) simulation, and stability-based enzyme activity to compare the stability and dynamic behaviors of native and S130G/A mutant form of BlaC. A significant decrease in melting temperature (BlaC T M 60°C, S130A T M 50°C, and S130G T M 45°C), kinetic instability at higher temperature, and comparative dynamic instability correlate the fact that resistance to beta-lactam/beta-lactamase inhibitor combinations will likely not arise from the structural alteration of BlaC, therefore establishing confidence that this therapeutic modality can be potentially applied as a part of a successful treatment regimen against M. tuberculosis.

4.
Enzyme Microb Technol ; 148: 109806, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34116765

ABSTRACT

Functionalizing C-H bond poses one of the most significant challenges for chemists providing them with very few substrate-specific synthetic routes. Despite being incredibly plastic in their enzymatic ability, they are confined with deficient enzymatic action and limited explicitness of the substrates. In this study, we have endeavored to characterize novel cytochrome P450 from Bacillus aryabhattai (CYP-BA), a homolog of CYP P450-BM3, by taking interdisciplinary approaches. We conducted structure and sequence comparison to understand the conservation pattern for active site residues, conserved fold, evolutionary relationships among others. Molecular dynamics simulations were performed to understand the dynamic nature and interaction with the substrates. CYP-BA was successfully cloned, purified, and characterized. The enzyme's stability toward various physicochemical parameters was evaluated by UV-vis spectroscopy and Circular Dichroism (CD) spectroscopy. Various saturated fatty acids being the natural cytochrome P450 substrates were evaluated as catalytic efficiency of substrate oxidation by CYP-BA. The binding affinity of these natural substrates was monitored against CYP-BA by isothermal titration calorimetry (ITC). The catalytic performance of CYP-BA was satisfactory enough to proceed to the next step, that is, engineering to expand the substrate range to include polycyclic aromatic hydrocarbons (PAH). This is the first evidence of cloning, purifying and characterizing a novel homolog of CYP-BM3 to enable a better understanding of this novel biocatalyst and to provide a platform toward expanding its catalytic process through enzyme engineering.


Subject(s)
Bacillus , NADPH-Ferrihemoprotein Reductase , Bacillus/genetics , Bacterial Proteins/genetics , Cytochrome P-450 Enzyme System/genetics
5.
Int J Biol Macromol ; 177: 337-350, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33582216

ABSTRACT

This study evaluated the inhibitory potential of various beta-lactamase inhibitors such as mechanism-based inhibitors (MBIs), carbapenems, monobactam, and non-beta-lactam inhibitors against Bla1, a class-A beta-lactamase encoded by Bacillus anthracis. The binding potential of different inhibitors was estimated using competitive kinetic assay, isothermal titration calorimetry, and Biolayer interferometry. We observed that tazobactam has better inhibition among other MBIs with a characteristics inhibition dissociation constant of 0.51 ± 0.13 µM. Avibactam was also identified as good inhibitor with an inhibition efficiency of 0.6 ± 0.04 µM. All the MBIs (KD = 1.90E-04 M, 2.05E-05 M, 3.55E-04 M for clavulanate, sulbactam and tazobactam) showed significantly better binding potential than carbapenems (KD = 1.02E-03 M, 2.74E-03 M, 1.24E-03 M for ertapenem, imipenem and biapenem respectively). Molecular dynamics simulations were carried out using Bla1-inhibitor complexes to understand the dynamics and stability. The minimum inhibitory concentration (MIC) was carried out by taking various substrates and inhibitors, and later it was followed by cell viability assay. Together, our study helps develop a proper understanding of Bla1 beta-lactamase and its interaction with inhibitory molecules. This study would facilitate comprehending the catalytic divergence of beta-lactamases and the newly emergent resistant strains, focusing on the new generation of therapeutics being less prone to antimicrobial resistance.


Subject(s)
Azabicyclo Compounds/chemistry , Bacillus anthracis/enzymology , Bacterial Proteins , beta-Lactam Resistance , beta-Lactamase Inhibitors/chemistry , beta-Lactamases/chemistry , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry
6.
J Biomol Struct Dyn ; 39(2): 635-649, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32048568

ABSTRACT

Functional foods are emerging as essential healthy nutritional component due to their abundant wellbeing benefits. Especially the food-derived peptides are considered as key components for playing their biologically active roles. One such robust therapeutics that already exploited with food peptides that help treating high blood pressure via targeting Angiotensin-Converting Enzyme (ACE). This in silico study demonstrated the inhibitory potential of antihypertensive peptides derived from food sources. This study involves an intensive structure-based analysis of enzyme-peptide interactions using Molecular Dynamics (MD) simulations. Interestingly, this study will help us to get deeper understanding on how food peptides achieve successful inhibition of ACE. In this study, the peptide-enzyme complexes revealed two binding pockets, A and B, on either side of the active site Zn atom. Pocket B has a smaller binding site volume than pocket A, comprised of ß-sheets and the active site opening cleft. The interface of the binding sites showed that the enzyme structure was negative to neutral charge, and the peptide structure was positive to neutral charge. The dynamics of complex structures of seven highly potential peptides were performed for 20 ns each at 300 K. Comparative analysis of RMSD, RMSF and binding energies show the enzyme-peptide complexes and the overall stability of apo-enzyme. Importantly, two peptides AFKAWAVAR and IWHHTF showed the highest variation in their RMSD as compared to the apo-enzyme. This study will further be useful for the assessment of the characteristics to predict novel inhibitory peptides that can be generated from food proteins.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antihypertensive Agents , Hypertension , Angiotensin-Converting Enzyme Inhibitors , Humans , Molecular Docking Simulation , Peptides , Peptidyl-Dipeptidase A
7.
Int J Biol Macromol ; 145: 510-526, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31874266

ABSTRACT

Bacillus anthracis, a potent pathogen of anthrax is becoming resistant to many beta-lactam antibiotics because of the expression of two chromosomally encoded beta-lactamases Bla1 and Bla2. Bla1 is a class A beta-lactamase whereas Bla2 is a Metallo beta-lactamase. In the current study, we have attempted in-detailed characterization of Bla1 beta-lactamase by taking interdisciplinary approaches. Our study includes structure and sequence comparison of this enzyme with other members of the class, to know the conservation pattern that includes active site residues, secondary structure, conserved fold, evolutionary relationships, etc. Dynamic characterizations of the enzyme, unfolding kinetics were determined with the help of Molecular dynamics simulation. Detailed enzyme stability and catalytic activity towards various physical (Temperature and pH), and chemical parameters (Urea, GnHCl) were performed. Together, our study helps to develop a proper understanding of this beta-lactamase by characterizing its biochemical, biophysical, dynamic, kinetic and thermodynamic properties. This would help contribute towards a better understanding of beta-lactamase based AMR emergence.


Subject(s)
Bacillus anthracis/enzymology , Kinetics , beta-Lactamases/genetics , Anti-Bacterial Agents/chemistry , Bacillus anthracis/pathogenicity , Humans , Microbial Sensitivity Tests , Molecular Dynamics Simulation , Thermodynamics , beta-Lactamases/chemistry
8.
J Cell Physiol ; 234(9): 14535-14555, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30723913

ABSTRACT

Epithelial-mesenchymal transition (EMT) is a key step in transdifferentiation process in solid cancer development. Forthcoming evidence suggest that the stratified program transforms polarized, immotile epithelial cells to migratory mesenchymal cells associated with enhancement of breast cancer stemness, metastasis, and drug resistance. It involves primarily several signaling pathways, such as transforming growth factor-ß (TGF-ß), cadherin, notch, plasminogen activator protein inhibitor, urokinase plasminogen activator, and WNT/beta catenin pathways. However, current understanding on the crosstalk of multisignaling pathways and assemblies of key transcription factors remain to be explored. In this review, we focus on the crosstalk of signal transduction pathways linked to the current therapeutic and drug development strategies. We have also performed the computational modeling on indepth the structure and conformational dynamic studies of regulatory proteins and analyze molecular interactions with their associate factors to understand the complicated process of EMT in breast cancer progression and metastasis. Electrostatic potential surfaces have been analyzed that help in optimization of electrostatic interactions between the protein and its ligand. Therefore, understanding the biological implications underlying the EMT process through molecular biology with biocomputation and structural biology approaches will enable the development of new therapeutic strategies to sensitize tumors to conventional therapy and suppress their metastatic phenotype.

9.
Int J Biol Macromol ; 124: 635-650, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30476512

ABSTRACT

A protease of the primary pathogen (Pseudoalteromonas agarivorans NW4327) of the disease affecting the Great Barrier Reef sponge Rhopaloeides odorabile was purified. Zymography demonstrated calcium-dependent collagenase and gelatinase activity of the purified protein. This metalloprotease was identified by matrix assisted laser desorption ionization time-of-flight mass spectrophotometry as a 52,509 Da U32 collagenase. Predicted tertiary structure of U32 collagenase (by Phyre2 fold recognition server) demonstrated 13% identity with known hydrolases establishing novelty of the enzyme. Molecular docking conceived two interacting loops of the collagenase that bound with collagen triple helices and two calcium ions remained centered between the loops. According to ConSurf multiple sequence alignment, the residues of loop1 of the collagenase were mostly conserved while variations among residues of loop2 were comparatively higher than loop1. Asp262, Glu263 of loop1 and Thr363, Lys364, Gln365 of loop2 participated in the interaction with Ca2+ and collagen. Root mean square deviation and root mean square fluctuation values signified higher stability of the collagen-Ca2+-collagenase complex and greater structural stability of the residues of the loops in the complex compared to apocollagenase. Observed properties of NW4327 U32 collagenase and its interaction with collagen were different from similar enzymes of thermophilic bacteria and terrestrial pathogens.


Subject(s)
Collagenases/chemistry , Collagenases/metabolism , Pseudoalteromonas/enzymology , Amino Acid Sequence , Binding Sites , Collagenases/isolation & purification , Enzyme Activation , Ions/chemistry , Matrix Metalloproteinase Inhibitors/chemistry , Matrix Metalloproteinase Inhibitors/pharmacology , Metals/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Protein Domains , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Structure-Activity Relationship , Substrate Specificity
10.
Exp Cell Res ; 368(2): 137-146, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29674112

ABSTRACT

The major hallmarks of Epithelial-Mesenchymal Transition (EMT) is the loss of epithelial cell polarity and loss of expression of the cell- cell adhesion molecule like E-cadherin and acquired mesenchymal cells marker called N-Cadherin. This phenotypical changes of E-M plasticity of cells is extensively considered to be a crucial factor for tumor cells invasion and cancer metastasis; landmark events for transforming a locally growing tumor (benign tumor) into a systemic and live-threatening disease (malignant tumor). Cadherin molecules are adherens junction proteins and expressed as multiple isoforms. Cadherin switching occurs during normal tissue developmental processes; also recapitulates the increasing aggressive behavior and metastatic nature of cancer cells when E-Cadherin converts to N-Cadherin, in particular. There are several mechanisms established that cadherin switching and some of the underlying pathways involves multiple steps associated with migration and invasion of cancer cells, and finally colonization of micro metastatic lesions to form macro-metastasis. Inhibition of metastasis is complicated by the plasticity of cancer cells behaviors and the evolving nature of microenvironment. Although there is no clear evidence how that dynamic structural switching of cadherin family member occurs, stabilized and eventually influence cell behavior, phenotypic transformations and initiate tumorigenesis. Therefore, we emphasize here the major functions of over 20 existing human cadherins in tissue integrity and stability as well as mechanistic understanding on recent work of cadherin ectodomain-mediated adhesion, functional studies of the cell-cell adhesion through key signaling intermediates interacting with other binding partners. We hope understanding on how the dynamic all existing cadherins influence the cell behavior can be targeted to design possible therapeutic interventions to combat its activity and prevent tumor cell growth, invasion and metastasis.


Subject(s)
Cadherins/metabolism , Carcinogenesis/metabolism , Epithelial-Mesenchymal Transition/physiology , Amino Acid Sequence , Cell Adhesion/physiology , Cell Movement/physiology , Cell Proliferation/physiology , Epithelial Cells/metabolism , Humans , Sequence Alignment , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...