Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 12253, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806545

ABSTRACT

Overexpression of Glycine max disease resistant 1 (GmDR1) exhibits broad-spectrum resistance against Fusarium virguliforme, Heterodera glycines (soybean cyst nematode), Tetranychus urticae (Koch) (spider mites), and Aphis glycines Matsumura (soybean aphids) in soybean. To understand the mechanisms of broad-spectrum immunity mediated by GmDR1, the transcriptomes of a strong and a weak GmDR1-overexpressor following treatment with chitin, a pathogen- and pest-associated molecular pattern (PAMP) common to these organisms, were investigated. The strong and weak GmDR1-overexpressors exhibited altered expression of 6098 and 992 genes, respectively, as compared to the nontransgenic control following chitin treatment. However, only 192 chitin- and 115 buffer-responsive genes exhibited over two-fold changes in expression levels in both strong and weak GmDR1-overexpressors as compared to the control. MapMan analysis of the 192 chitin-responsive genes revealed 64 biotic stress-related genes, of which 53 were induced and 11 repressed as compared to the control. The 53 chitin-induced genes include nine genes that encode receptor kinases, 13 encode nucleotide-binding leucine-rich repeat (NLR) receptor proteins, seven encode WRKY transcription factors, four ethylene response factors, and three MYB-like transcription factors. Investigation of a subset of these genes revealed three receptor protein kinases, seven NLR proteins, and one WRKY transcription factor genes that are induced following F. virguliforme and H. glycines infection. The integral plasma membrane GmDR1 protein most likely recognizes PAMPs including chitin and activates transcription of genes encoding receptor kinases, NLR proteins and defense-related genes. GmDR1 could be a pattern recognition receptor that regulates the expression of several NLRs for expression of PAMP-triggered immunity and/or priming the effector triggered immunity.


Subject(s)
Disease Resistance , Gene Expression Regulation, Plant , Glycine max , NLR Proteins , Plant Diseases , Plant Proteins , Glycine max/parasitology , Glycine max/genetics , Disease Resistance/genetics , Plant Diseases/parasitology , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , NLR Proteins/metabolism , NLR Proteins/genetics , Animals , Fusarium , Chitin/metabolism , Cell Membrane/metabolism , Transcriptome , Plants, Genetically Modified
3.
Front Plant Sci ; 13: 882561, 2022.
Article in English | MEDLINE | ID: mdl-35928708

ABSTRACT

The soybean root necrosis 1 (rn1) mutation causes progressive browning of the roots soon after germination and provides increased tolerance to the soil-borne oomycete pathogen Phytophthora sojae in soybean. Toward understanding the molecular basis of the rn1 mutant phenotypes, we conducted tandem mass tag (TMT)-labeling proteomics and phosphoproteomics analyses of the root tissues of the rn1 mutant and progenitor T322 line to identify potential proteins involved in manifestation of the mutant phenotype. We identified 3,160 proteins. When the p-value was set at ≤0.05 and the fold change of protein accumulation between rn1 and T322 at ≥1.5 or ≤0.67, we detected 118 proteins that showed increased levels and 32 proteins decreased levels in rn1 as compared to that in T322. The differentially accumulated proteins (DAPs) are involved in several pathways including cellular processes for processing environmental and genetic information, metabolism and organismal systems. Five pathogenesis-related proteins were accumulated to higher levels in the mutant as compared to that in T322. Several of the DAPs are involved in hormone signaling, redox reaction, signal transduction, and cell wall modification processes activated in plant-pathogen interactions. The phosphoproteomics analysis identified 22 phosphopeptides, the levels of phosphorylation of which were significantly different between rn1 and T322 lines. The phosphorylation levels of two type II metacaspases were reduced in rn1 as compared to T322. Type II metacaspase has been shown to be a negative regulator of hypersensitive cell death. In absence of the functional Rn1 protein, two type II metacaspases exhibited reduced phosphorylation levels and failed to show negative regulatory cell death function in the soybean rn1 mutant. We hypothesize that Rn1 directly or indirectly phosphorylates type II metacaspases to negatively regulate the cell death process in soybean roots.

4.
Front Plant Sci ; 13: 1094462, 2022.
Article in English | MEDLINE | ID: mdl-36714785

ABSTRACT

Introduction: Cold stress adversely affects the growth and development of plants and limits the geographical distribution of many plant species. Accumulation of spontaneous mutations shapes the adaptation of plant species to diverse climatic conditions. Methods: The genome-wide association study of the phenotypic variation gathered by a newly designed phenomic platform with the over six millions single nucleotide polymorphic (SNP) loci distributed across the genomes of 417 Arabidopsis natural variants collected from various geographical regions revealed 33 candidate cold responsive genes. Results: Investigation of at least two independent insertion mutants for 29 genes identified 16 chilling tolerance genes governing diverse genetic mechanisms. Five of these genes encode novel leucine-rich repeat domain-containing proteins including three nucleotide-binding site-leucine-rich repeat (NBS-LRR) proteins. Among the 16 identified chilling tolerance genes, ADS2 and ACD6 are the only two chilling tolerance genes identified earlier. Discussion: The 12.5% overlap between the genes identified in this genome-wide association study (GWAS) of natural variants with those discovered previously through forward and reverse genetic approaches suggests that chilling tolerance is a complex physiological process governed by a large number of genetic mechanisms.

5.
Front Plant Sci ; 12: 725571, 2021.
Article in English | MEDLINE | ID: mdl-34691104

ABSTRACT

Phytophthora sojae is an oomycete that causes stem and root rot disease in soybean. P. sojae delivers many RxLR effector proteins, including Avr1b, into host cells to promote infection. We show here that Avr1b interacts with the soybean U-box protein, GmPUB1-1, in yeast two-hybrid, pull down, and bimolecular fluorescence complementation (BIFC) assays. GmPUB1-1, and a homeologous copy GmPUB1-2, are induced by infection and encode 403 amino acid proteins with U-Box domains at their N-termini. Non-synonymous mutations in the Avr1b C-terminus that abolish suppression of cell death also abolished the interaction of Avr1b with GmPUB1-1, while deletion of the GmPUB1-1 C-terminus, but not the U box, abolished the interaction. BIFC experiments suggested that the GmPUB1-1-Avr1b complex is targeted to the nucleus. In vitro ubiquitination assays demonstrated that GmPUB1-1 possesses E3 ligase activity. Silencing of the GmPUB1 genes in soybean cotyledons resulted in loss of recognition of Avr1b by gene products encoded by Rps1-b and Rps1-k. The recognition of Avr1k (which did not interact with GmPUB1-1) by Rps1-k plants was not, however, affected following GmPUB1-1 silencing. Furthermore, over-expression of GmPUB1-1 in particle bombardment experiments triggered cell death suggesting that GmPUB1 may be a positive regulator of effector-triggered immunity. In a yeast two-hybrid system, GmPUB1-1 also interacted with a number of other RxLR effectors including Avr1d, while Avr1b and Avr1d interacted with a number of other infection-induced GmPUB proteins, suggesting that the pathogen uses a multiplex of interactions of RxLR effectors with GmPUB proteins to modulate host immunity.

6.
Sci Rep ; 11(1): 16907, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34413429

ABSTRACT

The Phytophtora root and stem rot is a serious disease in soybean. It is caused by the oomycete pathogen Phytophthora sojae. Growing Phytophthora resistant cultivars is the major method of controlling this disease. Resistance is race- or gene-specific; a single gene confers immunity against only a subset of the P. sojae isolates. Unfortunately, rapid evolution of new Phytophthora sojae virulent pathotypes limits the effectiveness of an Rps ("resistance to Phytophthora sojae") gene to 8-15 years. The current study was designed to investigate the effectiveness of Rps12 against a set of P. sojae isolates using recombinant inbred lines (RILs) that contain recombination break points in the Rps12 region. Our study revealed a unique Rps gene linked to the Rps12 locus. We named this novel gene as Rps13 that confers resistance against P. sojae isolate V13, which is virulent to recombinants that contains Rps12 but lack Rps13. The genetic distance between the two Rps genes is 4 cM. Our study revealed that two tightly linked functional Rps genes with distinct race-specificity provide broad-spectrum resistance in soybean. We report here the molecular markers for incorporating the broad-spectrum Phytophthora resistance conferred by the two Rps genes in commercial soybean cultivars.


Subject(s)
Disease Resistance/genetics , Genes, Plant , Glycine max/genetics , Glycine max/microbiology , Phytophthora/physiology , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Alleles , Inbreeding , Physical Chromosome Mapping , Phytophthora/isolation & purification , Plant Proteins/metabolism , Polymorphism, Genetic
7.
Front Plant Sci ; 12: 681816, 2021.
Article in English | MEDLINE | ID: mdl-34149782

ABSTRACT

The whole-genome sequencing-based bulked segregant analysis (WGS-BSA) has facilitated the mapping candidate causal variations for cloning target plant genes. Here, we report an improved WGS-BSA method termed as M2-seq to expedite the mapping candidate mutant loci by studying just M2 generation. It is an efficient mutant gene mapping tool, rapid, and comparable to the previously reported approaches, such as Mutmap and Mutmap+ that require studying M3 or advanced selfed generations. In M2-seq, background variations among the M2 populations can be removed efficiently without knowledge of the variations of the wild-type progenitor plant. Furthermore, the use of absolute delta single-nucleotide polymorphism (SNP) index values can effectively remove the background variation caused by repulsion phase linkages of adjacent mutant alleles; and thereby facilitating the identification of the causal mutation in target genes. Here, we demonstrated the application of M2-seq in successfully mapping the genomic regions harboring causal mutations for mutant phenotypes among 10 independent M2 populations of soybean. The mapping candidate mutant genes just in M2 generation with the aid of the M2-seq method should be particularly useful in expediting gene cloning especially among the plant species with long generation time.

8.
Plant J ; 107(5): 1432-1446, 2021 09.
Article in English | MEDLINE | ID: mdl-34171147

ABSTRACT

Non-host resistance (NHR), which protects all members of a plant species from non-adapted or non-host plant pathogens, is the most common form of plant immunity. NHR provides the most durable and robust form of broad-spectrum immunity against non-adaptive pathogens pathogenic to other crop species. In a mutant screen for loss of Arabidopsis (Arabidopsis thaliana) NHR against the soybean (Glycine max (L.) Merr.) pathogen Phytophthora sojae, the Phytophthora sojae-susceptible 30 (pss30) mutant was identified. The pss30 mutant is also susceptible to the soybean pathogen Fusarium virguliforme. PSS30 encodes a folate transporter, AtFOLT1, which was previously localized to chloroplasts and implicated in the transport of folate from the cytosol to plastids. We show that two Arabidopsis folate biosynthesis mutants with reduced folate levels exhibit a loss of non-host immunity against P. sojae. As compared to the wild-type Col-0 ecotype, the steady-state folate levels are reduced in the pss1, atfolt1 and two folate biosynthesis mutants, suggesting that folate is required for non-host immunity. Overexpression of AtFOLT1 enhances immunity of transgenic soybean lines against two serious soybean pathogens, the fungal pathogen F. virguliforme and the soybean cyst nematode (SCN) Heterodera glycines. Transgenic lines showing enhanced SCN resistance also showed increased levels of folate accumulation. This study thus suggests that folate contributes to non-host plant immunity and that overexpression of a non-host resistance gene could be a suitable strategy for generating broad-spectrum disease resistance in crop plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Disease Resistance/genetics , Glycine max/immunology , Membrane Transport Proteins/metabolism , Plant Diseases/immunology , Plant Immunity/genetics , Animals , Arabidopsis Proteins/genetics , Ecotype , Folic Acid/metabolism , Fusarium/physiology , Gene Expression , Membrane Transport Proteins/genetics , Mutation , Phytophthora/physiology , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/microbiology , Plant Leaves/parasitology , Plant Roots/genetics , Plant Roots/immunology , Plant Roots/microbiology , Plant Roots/parasitology , Plants, Genetically Modified , Glycine max/genetics , Glycine max/microbiology , Glycine max/parasitology , Tylenchoidea/physiology
9.
Plant Biotechnol J ; 19(3): 502-516, 2021 03.
Article in English | MEDLINE | ID: mdl-32954627

ABSTRACT

Plants fight-off pathogens and pests by manifesting an array of defence responses using their innate immunity mechanisms. Here we report the identification of a novel soybean gene encoding a plasma membrane protein, transcription of which is suppressed following infection with the fungal pathogen, Fusarium virguliforme. Overexpression of the protein led to enhanced resistance against not only against F. virguliforme, but also against spider mites (Tetranychus urticae, Koch), soybean aphids (Aphis glycines, Matsumura) and soybean cyst nematode (Heterodera glycines). We, therefore, name this protein as Glycine max disease resistance 1 (GmDR1; Glyma.10g094800). The homologues of GmDR1 have been detected only in legumes, cocoa, jute and cotton. The deduced GmDR1 protein contains 73 amino acids. GmDR1 is predicted to contain an ecto- and two transmembrane domains. Transient expression of the green fluorescent protein fused GmDR1 protein in soybean leaves showed that it is a plasma membrane protein. We investigated if chitin, a pathogen-associated molecular pattern (PAMP), common to all pathogen and pests considered in this study, can significantly enhance defence pathways among the GmDR1-overexpressed transgenic soybean lines. Chitin induces marker genes of the salicylic- and jasmonic acid-mediated defence pathways, but suppresses the defence pathway regulated by ethylene. Chitin induced SA- and JA-regulated defence pathways may be one of the mechanisms involved in generating broad-spectrum resistance among the GmDR1-overexpressed transgenic soybean lines against two serious pathogens and two pests including spider mites, against which no known resistance genes have been identified in soybean and among the most other crop species.


Subject(s)
Glycine max , Plant Diseases , Animals , Disease Resistance , Fusarium , Membrane Proteins , Mites , Plant Diseases/genetics , Plant Immunity , Plant Roots , Glycine max/genetics
10.
Phytopathology ; 111(7): 1064-1079, 2021 07.
Article in English | MEDLINE | ID: mdl-33200960

ABSTRACT

Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user's needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option available.


Subject(s)
Fusarium , Fusarium/genetics , Phylogeny , Plant Diseases , Plants
11.
PLoS One ; 14(2): e0212071, 2019.
Article in English | MEDLINE | ID: mdl-30807585

ABSTRACT

Fusarium virguliforme is a soil borne root pathogen that causes sudden death syndrome (SDS) in soybean [Glycine max (L.) Merrill]. Once the fungus invades the root xylem tissues, the pathogen secretes toxins that cause chlorosis and necrosis in foliar tissues leading to defoliation, flower and pod drop and eventually death of plants. Resistance to F. virguliforme in soybean is partial and governed by over 80 quantitative trait loci (QTL). We have conducted genome-wide association study (GWAS) for a group of 254 plant introductions lines using a panel of approximately 30,000 SNPs and identified 19 single nucleotide polymorphic loci (SNPL) that are associated with 14 genomic regions encoding foliar SDS and eight SNPL associated with seven genomic regions for root rot resistance. Of the identified 27 SNPL, six SNPL for foliar SDS resistance and two SNPL for root rot resistance co-mapped to previously identified QTL for SDS resistance. This study identified 13 SNPL associated with eight novel genomic regions containing foliar SDS resistance genes and six SNPL with five novel regions for root-rot resistance. This study identified five genes carrying nonsynonymous mutations: (i) three of which mapped to previously identified QTL for foliar SDS resistance and (ii) two mapped to two novel regions containing root rot resistance genes. Of the three genes mapped to QTL for foliar SDS resistance genes, two encode LRR-receptors and third one encodes a novel protein with unknown function. Of the two genes governing root rot resistance, Glyma.01g222900.1 encodes a soybean-specific LEA protein and Glyma.10g058700.1 encodes a heparan-alpha-glucosaminide N-acetyltransferase. In the LEA protein, a conserved serine residue was substituted with asparagine; and in the heparan-alpha-glucosaminide N-acetyltransferase, a conserved histidine residue was substituted with an arginine residue. Such changes are expected to alter functions of these two proteins regulated through phosphorylation. The five genes with nonsynonymous mutations could be considered candidate SDS resistance genes and should be suitable molecular markers for breeding SDS resistance in soybean. The study also reports desirable plant introduction lines and novel genomic regions for enhancing SDS resistance in soybean.


Subject(s)
Disease Resistance/genetics , Genome-Wide Association Study , Glycine max/genetics , Fusarium/isolation & purification , Fusarium/physiology , Genotype , Phenotype , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Principal Component Analysis , Quantitative Trait Loci , Glycine max/microbiology
12.
Theor Appl Genet ; 131(5): 1047-1062, 2018 May.
Article in English | MEDLINE | ID: mdl-29582113

ABSTRACT

KEY MESSAGE: Novel QTL conferring resistance to both the SDS and SCN was detected in two RIL populations. Dual resistant RILs could be used in breeding programs for developing resistant soybean cultivars. Soybean cultivars, susceptible to the fungus Fusarium virguliforme, which causes sudden death syndrome (SDS), and to the soybean cyst nematode (SCN) (Heterodera glycines), suffer yield losses valued over a billion dollars annually. Both pathogens may occur in the same production fields. Planting of cultivars genetically resistant to both pathogens is considered one of the most effective means to control the two pathogens. The objective of the study was to map quantitative trait loci (QTL) underlying SDS and SCN resistances. Two recombinant inbred line (RIL) populations were developed by crossing 'A95-684043', a high-yielding maturity group (MG) II line resistant to SCN, with 'LS94-3207' and 'LS98-0582' of MG IV, resistant to both F. virguliforme and SCN. Two hundred F7 derived recombinant inbred lines from each population AX19286 (A95-684043 × LS94-3207) and AX19287 (A95-684043 × LS98-0582) were screened for resistance to each pathogen under greenhouse conditions. Five hundred and eighty and 371 SNP markers were used for mapping resistance QTL in each population. In AX19286, one novel SCN resistance QTL was mapped to chromosome 8. In AX19287, one novel SDS resistance QTL was mapped to chromosome 17 and one novel SCN resistance QTL was mapped to chromosome 11. Previously identified additional SDS and SCN resistance QTL were also detected in the study. Lines possessing superior resistance to both pathogens were also identified and could be used as germplasm sources for breeding SDS- and SCN-resistant soybean cultivars.


Subject(s)
Disease Resistance/genetics , Glycine max/genetics , Plant Diseases/genetics , Quantitative Trait Loci , Animals , Chromosome Mapping , Haplotypes , Plant Diseases/parasitology , Polymorphism, Single Nucleotide , Glycine max/parasitology , Tylenchoidea
13.
Plant Physiol ; 176(1): 865-878, 2018 01.
Article in English | MEDLINE | ID: mdl-29101280

ABSTRACT

Nonhost resistance is defined as the immunity of a plant species to all nonadapted pathogen species. Arabidopsis (Arabidopsis thaliana) ecotype Columbia-0 is nonhost to the oomycete plant pathogen Phytophthora sojae and the fungal plant pathogen Fusarium virguliforme that are pathogenic to soybean (Glycine max). Previously, we reported generating the pss1 mutation in the pen1-1 genetic background as well as genetic mapping and characterization of the Arabidopsis nonhost resistance Phytophthora sojae-susceptible gene locus, PSS1 In this study, we identified six candidate PSS1 genes by comparing single-nucleotide polymorphisms of (1) the bulked DNA sample of seven F2:3 families homozygous for the pss1 allele and (2) the pen1-1 mutant with Columbia-0. Analyses of T-DNA insertion mutants for each of these candidate PSS1 genes identified the At3g59640 gene encoding a glycine-rich protein as the putative PSS1 gene. Later, complementation analysis confirmed the identity of At3g59640 as the PSS1 gene. PSS1 is induced following P. sojae infection as well as expressed in an organ-specific manner. Coexpression analysis of the available transcriptomic data followed by reverse transcriptase-polymerase chain reaction suggested that PSS1 is coregulated with ATG8a (At4g21980), a core gene in autophagy. PSS1 contains a predicted single membrane-spanning domain. Subcellular localization study indicated that it is an integral plasma membrane protein. Sequence analysis suggested that soybean is unlikely to contain a PSS1-like defense function. Following the introduction of PSS1 into the soybean cultivar Williams 82, the transgenic plants exhibited enhanced resistance to F. virguliforme, the pathogen that causes sudden death syndrome.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/immunology , Arabidopsis/metabolism , Cell Membrane/metabolism , Disease Resistance , Glycine max/genetics , Membrane Proteins/metabolism , Plant Diseases/immunology , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Genes, Plant , Genetic Complementation Test , Membrane Proteins/genetics , Mutation/genetics , Phylogeny , Phytophthora/physiology , Plant Diseases/microbiology , Plants, Genetically Modified
14.
PLoS One ; 12(8): e0180732, 2017.
Article in English | MEDLINE | ID: mdl-28797084

ABSTRACT

In soybean, variegated flowers can be caused by somatic excision of the CACTA-type transposable element Tgm9 from Intron 2 of the DFR2 gene encoding dihydroflavonol-4-reductase of the anthocyanin pigment biosynthetic pathway. DFR2 was mapped to the W4 locus, where the allele containing Tgm9 was termed w4-m. In this study we have demonstrated that previously identified morphological mutants (three chlorophyll deficient mutants, one male sterile-female fertile mutant, and three partial female sterile mutants) were caused by insertion of Tgm9 following its excision from DFR2. Analyses of Tgm9 insertion sites among 105 independent mutants demonstrated that Tgm9 hops to all 20 soybean chromosomes from its original location on Chromosome 17. Some genomic regions are prone to increased Tgm9-insertions. Tgm9 transposed over 25% of the time into exon or intron sequences. Tgm9 is therefore suitable for generating an indexed insertional mutant collection for functional analyses of most soybean genes. Furthermore, desirable Tgm9-induced stable knockout mutants can be utilized in generating improved traits for commercial soybean cultivars.


Subject(s)
Alcohol Oxidoreductases/genetics , DNA Transposable Elements , Genes, Plant , Glycine max/genetics , Plant Proteins/genetics , Alleles , Chromosomes, Plant/genetics , Gene Knockout Techniques , Mutation , Plants, Genetically Modified/genetics
15.
Sci Rep ; 7: 44365, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28295054

ABSTRACT

Time-lapse microscopic-photography allows in-depth phenotyping of microorganisms. Here we report development of such a system using a microfluidic device, generated from polydimethylsiloxane and glass slide, placed on a motorized stage of a microscope for conducting time-lapse microphotography of multiple observations in 20 channels simultaneously. We have demonstrated the utility of the device in studying growth, germination and sporulation in Fusarium virguliforme that causes sudden death syndrome in soybean. To measure the growth differences, we developed a polyamine oxidase fvpo1 mutant in this fungus that fails to grow in minimal medium containing polyamines as the sole nitrogen source. Using this system, we demonstrated that the conidiospores of the pathogen take an average of five hours to germinate. During sporulation, it takes an average of 10.5 h for a conidiospore to mature and get detached from its conidiophore for the first time. Conidiospores are developed in a single conidiophore one after another. The microfluidic device enabled quantitative time-lapse microphotography reported here should be suitable for screening compounds, peptides, micro-organisms to identify fungitoxic or antimicrobial agents for controlling serious plant pathogens. The device could also be applied in identifying suitable target genes for host-induced gene silencing in pathogens for generating novel disease resistance in crop plants.


Subject(s)
Fungal Proteins/genetics , Fusarium/ultrastructure , Lab-On-A-Chip Devices , Mycelium/ultrastructure , Oxidoreductases Acting on CH-NH Group Donors/genetics , Spores, Fungal/ultrastructure , Dimethylpolysiloxanes/chemistry , Fungal Proteins/metabolism , Fusarium/genetics , Fusarium/growth & development , Fusarium/pathogenicity , Gene Expression , Glass/chemistry , Mycelium/genetics , Mycelium/growth & development , Mycelium/pathogenicity , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Phenotype , Photography/instrumentation , Photography/methods , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Leaves/microbiology , Plant Roots/microbiology , Glycine max/microbiology , Spores, Fungal/genetics , Spores, Fungal/growth & development , Spores, Fungal/pathogenicity , Time-Lapse Imaging/instrumentation , Time-Lapse Imaging/methods , Polyamine Oxidase
16.
PLoS One ; 12(1): e0169950, 2017.
Article in English | MEDLINE | ID: mdl-28081566

ABSTRACT

Phytophthora sojae Kaufmann and Gerdemann, which causes Phytophthora root rot, is a widespread pathogen that limits soybean production worldwide. Development of Phytophthora resistant cultivars carrying Phytophthora resistance Rps genes is a cost-effective approach in controlling this disease. For this mapping study of a novel Rps gene, 290 recombinant inbred lines (RILs) (F7 families) were developed by crossing the P. sojae resistant cultivar PI399036 with the P. sojae susceptible AR2 line, and were phenotyped for responses to a mixture of three P. sojae isolates that overcome most of the known Rps genes. Of these 290 RILs, 130 were homozygous resistant, 12 heterzygous and segregating for Phytophthora resistance, and 148 were recessive homozygous and susceptible. From this population, 59 RILs homozygous for Phytophthora sojae resistance and 61 susceptible to a mixture of P. sojae isolates R17 and Val12-11 or P7074 that overcome resistance encoded by known Rps genes mapped to Chromosome 18 were selected for mapping novel Rps gene. A single gene accounted for the 1:1 segregation of resistance and susceptibility among the RILs. The gene encoding the Phytophthora resistance mapped to a 5.8 cM interval between the SSR markers BARCSOYSSR_18_1840 and Sat_064 located in the lower arm of Chromosome 18. The gene is mapped 2.2 cM proximal to the NBSRps4/6-like sequence that was reported to co-segregate with the Phytophthora resistance genes Rps4 and Rps6. The gene is mapped to a highly recombinogenic, gene-rich genomic region carrying several nucleotide binding site-leucine rich repeat (NBS-LRR)-like genes. We named this novel gene as Rps12, which is expected to be an invaluable resource in breeding soybeans for Phytophthora resistance.


Subject(s)
Disease Resistance/genetics , Genes, Plant , Glycine max/genetics , Phytophthora/physiology , Base Sequence , Chromosome Mapping , DNA, Plant/isolation & purification , DNA, Plant/metabolism , Microsatellite Repeats/genetics , Molecular Sequence Data , Phenotype , Phytophthora/isolation & purification , Plant Diseases/genetics , Plant Diseases/parasitology , Plant Proteins/genetics , Plant Roots/parasitology , Glycine max/growth & development , Glycine max/parasitology
17.
PLoS One ; 12(1): e0169963, 2017.
Article in English | MEDLINE | ID: mdl-28095498

ABSTRACT

Sudden death syndrome (SDS) is caused by the fungal pathogen, Fusarium virguliforme, and is a major threat to soybean production in North America. There are two major components of this disease: (i) root necrosis and (ii) foliar SDS. Root symptoms consist of root necrosis with vascular discoloration. Foliar SDS is characterized by interveinal chlorosis and leaf necrosis, and in severe cases by flower and pod abscission. A major toxin involved in initiating foliar SDS has been identified. Nothing is known about how root necrosis develops. In order to unravel the mechanisms used by the pathogen to cause root necrosis, the transcriptome of the pathogen in infected soybean root tissues of a susceptible cultivar, 'Essex', was investigated. The transcriptomes of the germinating conidia and mycelia were also examined. Of the 14,845 predicted F. virguliforme genes, we observed that 12,017 (81%) were expressed in germinating conidia and 12,208 (82%) in mycelia and 10,626 (72%) in infected soybean roots. Of the 10,626 genes induced in infected roots, 224 were transcribed only following infection. Expression of several infection-induced genes encoding enzymes with oxidation-reduction properties suggests that degradation of antimicrobial compounds such as the phytoalexin, glyceollin, could be important in early stages of the root tissue infection. Enzymes with hydrolytic and catalytic activities could play an important role in establishing the necrotrophic phase. The expression of a large number of genes encoding enzymes with catalytic and hydrolytic activities during the late infection stages suggests that cell wall degradation could be involved in root necrosis and the establishment of the necrotrophic phase in this pathogen.


Subject(s)
Fusarium/genetics , Glycine max/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Roots/genetics , Transcriptome/genetics , Fusarium/growth & development , Gene Expression Regulation, Plant , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions , Hydrolysis , Necrosis , Plant Roots/enzymology , Plant Roots/microbiology , RNA, Plant/genetics , Glycine max/enzymology , Glycine max/microbiology
19.
PLoS One ; 11(10): e0163106, 2016.
Article in English | MEDLINE | ID: mdl-27760122

ABSTRACT

Fusarium virguliforme causes the serious disease sudden death syndrome (SDS) in soybean. Host resistance to this pathogen is partial and is encoded by a large number of quantitative trait loci, each conditioning small effects. Breeding SDS resistance is therefore challenging and identification of single-gene encoded novel resistance mechanisms is becoming a priority to fight this devastating this fungal pathogen. In this transcriptomic study we identified a few putative soybean defense genes, expression of which is suppressed during F. virguliforme infection. The F. virguliforme infection-suppressed genes were broadly classified into four major classes. The steady state transcript levels of many of these genes were suppressed to undetectable levels immediately following F. virguliforme infection. One of these classes contains two novel genes encoding ankyrin repeat-containing proteins. Expression of one of these genes, GmARP1, during F. virguliforme infection enhances SDS resistance among the transgenic soybean plants. Our data suggest that GmARP1 is a novel defense gene and the pathogen presumably suppress its expression to establish compatible interaction.


Subject(s)
Ankyrin Repeat , Disease Resistance/genetics , Fusarium/physiology , Gene Expression Profiling , Glycine max/microbiology , Host-Pathogen Interactions/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/chemistry , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/microbiology , Plants, Genetically Modified , Reproducibility of Results , Glycine max/genetics , Glycine max/immunology
20.
Biomicrofluidics ; 10(3): 034108, 2016 May.
Article in English | MEDLINE | ID: mdl-27279932

ABSTRACT

This paper reports a highly economical and accessible approach to generate different discrete relative humidity conditions in spatially separated wells of a modified multi-well plate for humidity assay of plant-pathogen interactions with good throughput. We demonstrated that a discrete humidity gradient could be formed within a few minutes and maintained over a period of a few days inside the device. The device consisted of a freeway channel in the top layer, multiple compartmented wells in the bottom layer, a water source, and a drying agent source. The combinational effects of evaporation, diffusion, and convection were synergized to establish the stable discrete humidity gradient. The device was employed to study visible and molecular disease phenotypes of soybean in responses to infection by Phytophthora sojae, an oomycete pathogen, under a set of humidity conditions, with two near-isogenic soybean lines, Williams and Williams 82, that differ for a Phytophthora resistance gene (Rps1-k). Our result showed that at 63% relative humidity, the transcript level of the defense gene GmPR1 was at minimum in the susceptible soybean line Williams and at maximal level in the resistant line Williams 82 following P. sojae CC5C infection. In addition, we investigated the effects of environmental temperature, dimensional and geometrical parameters, and other configurational factors on the ability of the device to generate miniature humidity environments. This work represents an exploratory effort to economically and efficiently manipulate humidity environments in a space-limited device and shows a great potential to facilitate humidity assay of plant seed germination and development, pathogen growth, and plant-pathogen interactions. Since the proposed device can be easily made, modified, and operated, it is believed that this present humidity manipulation technology will benefit many laboratories in the area of seed science, plant pathology, and plant-microbe biology, where humidity is an important factor that influences plant disease infection, establishment, and development.

SELECTION OF CITATIONS
SEARCH DETAIL
...