Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Eur J Nucl Med Mol Imaging ; 45(1): 4-11, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28894899

ABSTRACT

PURPOSE: The purpose of our study was to assess 18F-DCFBC PET/CT, a PSMA targeted PET agent, for lesion detection and clinical management of biochemical relapse in prostate cancer patients after primary treatment. METHODS: This is a prospective IRB-approved study of 68 patients with documented biochemical recurrence after primary local therapy consisting of radical prostatectomy (n = 50), post radiation therapy (n = 9) or both (n = 9), with negative conventional imaging. All 68 patients underwent whole-body 18F-DCFBC PET/CT, and 62 also underwent mpMRI within one month. Lesion detection with 18F-DCFBC was correlated with mpMRI findings and pre-scan PSA levels. The impact of 18F-DCFBC PET/CT on clinical management and treatment decisions was established after 6 months' patient clinical follow-up. RESULTS: Forty-one patients (60.3%) showed at least one positive 18F-DCFBC lesion, for a total of 79 lesions, 30 in the prostate bed, 39 in lymph nodes, and ten in distant sites. Tumor recurrence was confirmed by either biopsy (13/41 pts), serial CT/MRI (8/41) or clinical follow-up (15/41); there was no confirmation in five patients, who continue to be observed. The 18F-DCFBC and mpMRI findings were concordant in 39 lesions (49.4%), and discordant in 40 lesions (50.6%); the majority (n = 32/40) of the latter occurring because the recurrence was located outside the mpMRI field of view. 18F-DCFBC PET positivity rates correlated with PSA values and 15%, 46%, 83%, and 77% were seen in patients with PSA values <0.5, 0.5 to <1.0, 1.0 to <2.0, and ≥2.0 ng/mL, respectively. The optimal cut-off PSA value to predict a positive 18F-DCFBC scan was 0.78 ng/mL (AUC = 0.764). A change in clinical management occurred in 51.2% (21/41) of patients with a positive 18F-DCFBC result, generally characterized by starting a new treatment in 19 patients or changing the treatment plan in two patients. CONCLUSIONS: 18F-DCFBC detects recurrences in 60.3% of a population of patients with biochemical recurrence, but results are dependent on PSA levels. Above a threshold PSA value of 0.78 ng/mL, 18F-DCFBC was able to identify recurrence with high reliability. Positive 18F-DCFBC PET imaging led clinicians to change treatment strategy in 51.2% of patients.


Subject(s)
Antigens, Surface/blood , Cysteine/analogs & derivatives , Glutamate Carboxypeptidase II/blood , Positron Emission Tomography Computed Tomography/standards , Prostatic Neoplasms/diagnostic imaging , Radiopharmaceuticals , Aged , Humans , Male , Middle Aged , Positron Emission Tomography Computed Tomography/methods , Prostatic Neoplasms/blood , Sensitivity and Specificity
2.
Am J Nucl Med Mol Imaging ; 7(4): 195-203, 2017.
Article in English | MEDLINE | ID: mdl-28913158

ABSTRACT

89Zr-panitumumab is a novel immuno-PET radiotracer. A fully humanized IgG2 antibody, panitumumab binds with high affinity to the extracellular ligand binding domain of EGFR. Immuno-PET with radiolabeled panitumumab is a non-invasive method that could characterize EGFR expression in tumors and metastatic lesions. It might also assist in selecting patients likely to benefit from targeted therapy as well as monitor response and drug biodistribution for dosing guidance. Our objective was to calculate the maximum dosing for effective imaging with minimal radiation exposure in a small subset. Three patients with metastatic colon cancer were injected with approximately 1 mCi (37 MBq) of 89Zr-panitumumab IV. Whole body static images were then obtained at 2-6 hours, 1-3 days and 5-7 days post injection. Whole organ contours were applied to the liver, kidneys, spleen, stomach, lungs, bone, gut, heart, bladder and psoas muscle. From these contours, time activity curves were derived and used to calculate mean resident times which were used as input into OLINDA 1.1 software for dosimetry estimates. The whole body effective dose was estimated between 0.264 mSv/MBq (0.97 rem/mCi) and 0.330 mSv/MBq (1.22 rem/mCi). The organ which had the highest dose was the liver which OLINDA estimated between 1.9 mGy/MBq (7.2 rad/mCi) and 2.5 mGy/MBq (9 rad/mCi). The effective dose is within range of extrapolated estimates from mice studies. 89Zr-panitumumab appears safe and dosimetry estimates are reasonable for clinical imaging.

3.
Clin Nucl Med ; 42(10): 735-740, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28806263

ABSTRACT

PURPOSE: To assess the ability of (N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-4-F-fluorobenzyl-L-cysteine) (F-DCFBC), a prostate-specific membrane antigen-targeted PET agent, to detect localized prostate cancer lesions in correlation with multiparametric MRI (mpMRI) and histopathology. METHODS: This Health Insurance Portability and Accountability Act of 1996-compliant, prospective, institutional review board-approved study included 13 evaluable patients with localized prostate cancer (median age, 62.8 years [range, 51-74 years]; median prostate-specific antigen, 37.5 ng/dL [range, 3.26-216 ng/dL]). Patients underwent mpMRI and F-DCFBC PET/CT within a 3 months' window. Lesions seen on mpMRI were biopsied under transrectal ultrasound/MRI fusion-guided biopsy, or a radical prostatectomy was performed. F-DCFBC PET/CT and mpMRI were evaluated blinded and separately for tumor detection on a lesion basis. For PET image analysis, MRI and F-DCFBC PET images were fused by using software registration; imaging findings were correlated with histology, and uptake of F-DCFBC in tumors was compared with uptake in benign prostatic hyperplasia nodules and normal peripheral zone tissue using the 80% threshold SUVmax. RESULTS: A total of 25 tumor foci (mean size, 1.8 cm; median size, 1.5 cm; range, 0.6-4.7 cm) were histopathologically identified in 13 patients. Sensitivity rates of F-DCFBC PET/CT and mpMRI were 36% and 96%, respectively, for all tumors. For index lesions, the largest tumor with highest Gleason score, sensitivity rates of F-DCFBC PET/CT and mpMRI were 61.5% and 92%, respectively. The average SUVmax for primary prostate cancer was higher (5.8 ± 4.4) than that of benign prostatic hyperplasia nodules (2.1 ± 0.3) or that of normal prostate tissue (2.1 ± 0.4) at 1 hour postinjection (P = 0.0033). CONCLUSIONS: The majority of index prostate cancers are detected with F-DCFBC PET/CT, and this may be a prognostic indicator based on uptake and staging. However, for detecting prostate cancer with high sensitivity, it is important to combine prostate-specific membrane antigen PET/CT with mpMRI.


Subject(s)
Antigens, Surface/metabolism , Cysteine/analogs & derivatives , Glutamate Carboxypeptidase II/metabolism , Magnetic Resonance Imaging , Positron Emission Tomography Computed Tomography , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Aged , Humans , Male , Middle Aged , Prospective Studies , Prostatectomy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/surgery
4.
Mol Imaging ; 14: 499-515, 2015.
Article in English | MEDLINE | ID: mdl-26461980

ABSTRACT

Developing an imaging agent targeting the hepatocyte growth factor receptor protein (Met) status of cancerous lesions would aid in the diagnosis and monitoring of Met-targeted tyrosine kinase inhibitors (TKIs). A peptide targeting Met labeled with [(99m)Tc] had high affinity in vitro (Kd = 3.3 nM) and detected relative changes in Met in human cancer cell lines. In vivo [(99m)Tc]-Met peptide (AH-113018) was retained in Met-expressing tumors, and high-expressing Met tumors (MKN-45) were easily visualized and quantitated using single-photon emission computed tomography or optical imaging. In further studies, MKN-45 mouse xenografts treated with PHA 665752 (Met TKI) or vehicle were monitored weekly for tumor responses by [(99m)Tc]-Met peptide imaging and measurement of tumor volumes. Tumor uptake of [(99m)Tc]-Met peptide was significantly decreased as early as 1 week after PHA 665752 treatment, corresponding to decreases in tumor volumes. These results were comparable to Cy5**-Met peptide (AH-112543) fluorescence imaging using the same treatment model. [(99m)Tc] or Cy5**-Met peptide tumor uptake was further validated by histologic (necrosis, apoptosis) and immunoassay (total Met, p Met, and plasma shed Met) assessments in imaged and nonimaged cohorts. These data suggest that [(99m)Tc] or Cy5**-Met peptide imaging may have clinical diagnostic, prognostic, and therapeutic monitoring applications.


Subject(s)
Carbocyanines/metabolism , Neoplasms/diagnostic imaging , Organotechnetium Compounds/metabolism , Peptides/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/metabolism , Tomography, Emission-Computed, Single-Photon/methods , Xenograft Model Antitumor Assays , Animals , Cell Line, Tumor , Humans , Indoles/pharmacology , Mice , Spectrometry, Fluorescence , Staining and Labeling , Sulfones/pharmacology , Technetium , Tissue Distribution/drug effects , Tumor Burden
5.
J Labelled Comp Radiopharm ; 57(14): 730-6, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25476421

ABSTRACT

16α-[(18)F]fluoroestradiol ([(18)F]FES) is known as a clinically important tracer in nuclear medicine as an estrogen receptor ligand for investigating primary and metastatic breast cancers. Synthesizing [(18)F]FES is a two-step process associated with [(18)F]fluoride incorporation to the precursor (3-methoxymethyl 16ß,17ß-epiestriol-O-cyclic sulfone) and subsequent hydrolysis of the [(18)F]fluorinated intermediate with 2 N HCl. The impact of microwave (MW) heating on both fluorination and hydrolysis reactions was investigated. The duration and temperatures of the fluorination reaction were varied for both MW heating and conventional heating (CH) methods. Chemical and radiochemical purity and radiochemical yields were investigated for CH and compared with MW-assisted radiosyntheses. Quality control tests of MW-assisted [(18)F]FES were performed following US Pharmacopeia procedures for clinical-grade positron emission tomography pharmaceuticals. The results demonstrate that microwaving not only improves the (18)F-fluoride incorporation (~55% improvement at 110°C for 4 min) but also significantly reduces hydrolysis time (approximately sevenfold reduction at 120°C) in comparison with CH under similar conditions. The overall isolated radiochemical yield of purified [(18)F]FES was significantly higher (~90% improvement) with MW, and side products were notably fewer. Quality control test results demonstrated that [(18)F]FES produced by microwaving was suitable for human injection.


Subject(s)
Chemistry Techniques, Synthetic/methods , Estradiol/analogs & derivatives , Fluorine Radioisotopes , Hot Temperature , Microwaves , Radiopharmaceuticals/chemical synthesis , Breast Neoplasms/diagnostic imaging , Estradiol/chemical synthesis , Estradiol/chemistry , Humans , Isotope Labeling , Kinetics , Positron-Emission Tomography , Quality Control , Radiochemistry , Radiopharmaceuticals/chemistry
6.
Medchemcomm ; 5(9): 1337-1346, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25431648

ABSTRACT

To investigate panitumumab-IRDye800 as an intraoperative optical imaging agent for epidermal growth factor receptor (EGFR)-expressing cancers, we developed clinical-quality panitumumab-IRDye800 and evaluated its specificity and sensitivity to visualize tumors by fluorescence imaging in a variety of mouse xenograft models with different levels of EGFR-expression. Panitumumab was chemically conjugated to NIR-dye (Li-COR 800CW) at well-defined and limited substitution ratio (1:1-2) for the characterization of fluorescence signals. Yield and purity of the conjugate was 80±5% and 95±2% respectively (n= 6). Quality control (QC) tests showed that product was suitable for clinical development. Female athymic nude xenograft tumor bearing mice (n=5 per tumor model) with very low (BT-474), moderate (MDA-MB-231), and high (MDA-MB-468) EGFR-expression levels were administered panitumumab-IRDye800 formulations (100 µg of mAb in 100 µL of 0.9% saline) via tail-vein injection. Animal imaging and biodistribution experiments were conducted on the FMT 2500 (Perkin Elmer) fluorescence scanner at 24, 48, 72, 96, and 144 hours post injection. Immuno-fluorescence images of panitumumab-IRDye conjugate recorded in mouse xenograft models showed a good correlation (R2 = 0.91) between EGFR-expression level and tumor uptake. Uptake of panitumumab labeled with IR-Dye or [89Zr] in different tumor xenografts with high, medium, and low EGFR expression, as measured by fluorescence or radioactive counts are highly correlated (r2= 0.99). This preclinical in-vivo study proved that panitumumab-IRDye800 is specific and optical imaging in conjunction with this probe is sensitive enough to detect EGFR-expressing tumors.

7.
J Labelled Comp Radiopharm ; 57(1): 25-35, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24448743

ABSTRACT

Panitumumab is a fully human monoclonal antibody approved for the treatment of epidermal growth factor receptor (EGFR) positive colorectal cancer. Recently, panitumumab has been radiolabeled with (89) Zr and evaluated for its potential to be used as immuno-positron emission tomography (PET) probe for EGFR positive cancers. Interesting preclinical results published by several groups of researchers have prompted us to develop a robust procedure for producing clinical-grade (89) Zr-panitumumab as an immuno-PET probe to evaluate EGFR-targeted therapy. In this process, clinical-grade panitumumab is bio-conjugated with desferrioxamine chelate and subsequently radiolabeled with (89) Zr resulting in high radiochemical yield (>70%, n = 3) and purity (>98%, n = 3). All quality control (QC) tests were performed according to United States Pharmacopeia specifications. QC tests showed that (89) Zr-panitumumab met all specifications for human injection. Herein, we describe a step-by-step method for the facile synthesis and QC tests of (89) Zr-panitumumab for medical use. The entire process of bioconjugation, radiolabeling, and all QC tests will take about 5 h. Because the synthesis is fully manual, two rapid, in-process QC tests have been introduced to make the procedure robust and error free.


Subject(s)
ErbB Receptors/metabolism , Molecular Targeted Therapy , Positron-Emission Tomography/methods , Radiochemistry/methods , Radioisotopes , Radiopharmaceuticals , Zirconium , Antibodies, Monoclonal , Endotoxins/analysis , Humans , Hydrogen-Ion Concentration , Panitumumab , Quality Control , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/chemistry
8.
9.
Int J Mol Imaging ; 2013: 278607, 2013.
Article in English | MEDLINE | ID: mdl-23762549

ABSTRACT

16 α -[(18)F]-fluoroestradiol ([(18)F]FES), a steroid-based positron emission tomography (PET) tracer, has emerged as a dependable tracer for the evaluation and management of estrogen receptor-positive (ER+) breast cancer patients. We have developed a fully automatic, one-pot procedure for the synthesis of [(18)F]FES using the Eckert & Ziegler (E & Z) radiomodular system. After [(18)F]fluorination, the intermediate was hydrolyzed with 2.0 M HCl twice and neutralized with sodium bicarbonate. After high-performance liquid chromatography (HPLC) purification, the decay-corrected radiochemical yield and purity of [(18)F]FES were 40 ± 5.0% (n = 12) and >97%, respectively. The product was stable up to 10 h. Total synthesis time including HPLC purification was 80 min. This new, fully automated rapid synthetic procedure provided high and reproducible yields of [(18)F]FES. Quality control (QC) tests showed that the [(18)F]FES produced by this method met all specifications for human injection.

10.
Nucl Med Biol ; 40(4): 451-7, 2013 May.
Article in English | MEDLINE | ID: mdl-23454247

ABSTRACT

INTRODUCTION: Anti-HER1 monoclonal antibody (mAb), panitumumab (Vectibix) is a fully human mAb approved by the FDA for the treatment of epidermal growth factor receptor (EGFR, HER1)-expressing colorectal cancers. By combining the targeted specificity of panitumumab with the quantitative in vivo imaging capabilities of PET, we evaluated the potential of (89)Zr-DFO-panitumumab PET/CT imaging and performed non-invasive, in vivo imaging of HER1 expression and estimated human dosimetry. METHODS: Panitumumab was radiolabeled with (89)Zr using a derivative of desferrioxamine (DFO-Bz-NCS) and with (111)In using CHX-A" DTPA as bifunctional chelators. Comparative biodistribution/dosimetry of both radiotracers was performed in non-tumor bearing athymic nude mice (n=2 females and n=2 males) over 1-week following i.v. injection of either using (89)Zr-DFO-panitumumab or (111)In-CHX-A"-DTPA-panitumumab. Micro-PET/CT imaging of female athymic nude mice bearing human breast cancer tumors (n=5 per tumor group) with variable HER1-expression very low (BT-474), moderate (MDA-MB-231), and very high (MDA-MB-468) was performed at over 1 week following i.v. injection of (89)Zr-DFO-panitumumab. RESULTS: Radiochemical yield and purity of (89)Zr-Panitumumab was >70% and >98% respectively with specific activity 150 ± 10 MBq/mg of panitumumab in a ~4 hr synthesis time. Biodistribution of (111)In-CHX-A" DTPA -panitumumab and (89)Zr-DFO-panitumumab in athymic non-tumor bearing nude mice displayed similar percent injected dose per gram of tissue with prominent accumulation of both tracers in the lymph nodes, a known clearance mechanism of panitumumab. Also exhibited was prolonged blood pool with no evidence of targeted accumulation in any organ. Human radiation dose estimates showed similar biodistributions with estimated human effective doses of 0.578 and 0.183 mSv/MBq for (89)Zr-DFO-panitumumab and (111)In-CHX-A"-DTPA-panitumumab, respectively. Given the potential quantitative and image quality advantages of PET, imaging of tumor bearing mice was only performed using (89)Zr-DFO-panitumumab. Immuno-PET imaging of (89)Zr-DFO-panitumumab in mice bearing breast cancer xenograft tumors with variable HER1 expression showed high tumor uptake (SUV >7) in the MDA-MB-468 high HER1-expressing mice and a strong correlation between HER1-expression level and tumor uptake (R(2)= 0.857, P < .001). CONCLUSIONS: (89)Zr-DFO-panitumumab can prepared with high radiochemical purity and specific activity. (89)Zr-DFO-panitumumab microPET/CT showed uptake corresponding to HER-1 expression. Due to poor clearance, initial dosimetry estimates suggest that only a low dose (89)Zr-DFO-panitumumab shows favorable human dosimetry; however due to high tumor uptake, the use of (89)Zr-DFO-panitumumab is expected to be clinically feasible.


Subject(s)
Antibodies, Monoclonal , Breast Neoplasms/diagnostic imaging , ErbB Receptors/metabolism , Gene Expression Regulation, Neoplastic , Positron-Emission Tomography/methods , Radioisotopes , Zirconium , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacokinetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Transformation, Neoplastic , Female , Humans , Immunoconjugates/chemistry , Immunoconjugates/pharmacokinetics , Isotope Labeling , Male , Mice , Panitumumab , Pentetic Acid/chemistry , Radiometry
12.
Dalton Trans ; 40(23): 6112-28, 2011 Jun 21.
Article in English | MEDLINE | ID: mdl-21541393

ABSTRACT

Metallic radionuclides are the mainstay of both diagnostic and therapeutic radiopharmaceuticals. Therapeutic nuclear medicine is less advanced but has tremendous potential if the radionuclide is accurately targeted. Great interest exists in the field of inorganic chemistry for developing target specific radiopharmaceuticals based on radiometals for non-invasive disease detection and cancer radiotherapy. This perspective will focus on the nuclear properties of a few important radiometals and their recent applications to developing radiopharmaceuticals for imaging and therapy. Other topics for discussion will include imaging techniques, radiotherapy, analytical techniques, and radiation safety. The ultimate goal of this perspective is to introduce inorganic chemists to the field of nuclear medicine and radiopharmaceutical development, where many applications of fundamental inorganic chemistry can be found.


Subject(s)
Coordination Complexes/chemistry , Metals/chemistry , Radiopharmaceuticals/chemistry , Coordination Complexes/therapeutic use , Drug Design , Humans , Neoplasms/diagnosis , Neoplasms/therapy , Positron-Emission Tomography , Radiopharmaceuticals/therapeutic use , Tomography, Emission-Computed, Single-Photon
13.
Inorg Chem ; 48(9): 3916-25, 2009 May 04.
Article in English | MEDLINE | ID: mdl-18759429

ABSTRACT

The synthesis of novel metalloendiyne complexes MLRX(2) (where L = 1,4-dibenzyl/diethyl-1,4-diaza-cyclododec-8-ene-6,10-diyne, X = halogen) are reported with their X-ray crystal structures and thermal Bergman cyclization temperatures. Two distinct types of constructs are obtained; the Zn(II) compounds are tetrahedral, while the Cu(II) and the Pd(II) compounds are all distorted- or square-planar. Each possesses structurally similar enediyne conformations and critical distances (3.75-3.88 A). The tetragonal Cu(II) species all exhibit Bergman cyclization temperatures between 140 and 150 degrees C in the solid state, while the square-planar Pd(II) analogues possess similar critical distances but cyclize at significantly higher temperatures (205-220 degrees C). In contrast, the Zn(II) derivatives show a marked halogen dependence, with X = Cl having the highest Bergman cyclization temperature, which is comparable to the Pd(II) square-planar set, while the ZnLX(2) compound with X = I shows the lowest Bergman cyclization temperature (144 degrees C), similar to the Cu(II) derivatives. Moreover, for the planar constructs, the R group has little influence on the cyclization temperatures; however, for the tetrahedral ZnLX(2) compounds, the steric influence of the R group plays a more significant role in the cyclization reaction coordinate by influencing the stability of the precyclized intermediate. This complex set of results is best interpreted by a combination of steric contributions and electronic interactions between the halogen through space (in the case of Zn(II)) and through bonds (in the case of Pd(II)) and the pi orbitals of the endiyne fragment. In contrast, for Cu(II) systems, the distorted square-planar geometry permits neither direct through space nor symmetry-allowed through bond communication between the orbital partners, and thus little variation in Bergman cyclization reactivity is observed.


Subject(s)
Copper/chemistry , Enediynes/chemistry , Palladium/chemistry , Zinc/chemistry , Crystallography, X-Ray , Cyclization , Electrons , Enediynes/chemical synthesis , Molecular Conformation , Temperature
14.
Bioconjug Chem ; 19(6): 1186-93, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18505279

ABSTRACT

We are evaluating PCT imaging in conjunction with NIR dye labeled Herceptin antibody for noninvasive assessment of HER2 expression in tumors. Herceptin was labeled with Alexa Fluor-750 amine reactive dye for characterization of photoacoustic and fluorescence signals. Measurements were performed in solution and after incubation in cultured cell lines that were positive or negative in expression of HER2. The dye to antibody ratio was controlled to achieve a broad range of degree of labeling (DOL = 2 to 15). Photoacoustic signal intensity of Herceptin-dye conjugates in solution increased with increases over the entire DOL range studied. In contrast, fluorescence exhibited significant quenching for higher DOL. In vitro PCT imaging of the labeled HER2 (+) and HER2 (-) cells revealed the targeting specificity of the NIR dye labeled Herceptin. In HER2 (+) cells lines, photoacoustic signal intensity gradually increased with increasing DOL and with increasing number of cells. These results demonstrate that PCT-based measurement of HER2 receptor binding using NIR dye labeled Herceptin is feasible. The absence of a quenching effect with increased DOL advantages this method over traditional methods based on fluorescence measurement.


Subject(s)
Antibodies, Monoclonal/chemistry , Breast Neoplasms/diagnosis , Fluorescent Dyes , Gene Expression Regulation, Neoplastic , Genes, erbB-2/genetics , Infrared Rays , Tomography/methods , Antibodies, Monoclonal/analysis , Antibodies, Monoclonal, Humanized , Breast Neoplasms/metabolism , Cell Line, Tumor , Fluorescence , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , Humans , Receptor, ErbB-2/metabolism , Staining and Labeling , Substrate Specificity , Trastuzumab , Ultrasonics
15.
Chem Commun (Camb) ; (42): 5295-7, 2005 Nov 14.
Article in English | MEDLINE | ID: mdl-16244733

ABSTRACT

Tetradentate metalloenediynes with strong imine and weaker thioether coordination serve as a geometrically non-rigid switch to drive thermal Bergman cyclization.


Subject(s)
Enediynes/chemistry , Metals/chemistry , Cyclization , Hot Temperature , Models, Molecular , Molecular Structure
17.
Curr Top Med Chem ; 4(15): 1637-54, 2004.
Article in English | MEDLINE | ID: mdl-15579101

ABSTRACT

The remarkable discovery of the enediyne antitumor antibiotics almost two decades ago has led to significant developments in the systematic design and study of simple synthetic enediyne constructs and their Bergman cyclization reactivities. Advances in understanding both the geometric and electronic factors that are important in influencing the activation barrier to formation of the potent 1,4-phenyl diradical intermediate in simple organic enediynes have been made as a first step to the development of synthetic agents for biomedical uses. Progress in these areas has also served as a benchmark and guideline for a new wave of inorganic metalloenediyne constructs that display variable and wide-ranging reactivity or stability depending upon the geometric or electronic structure of the resulting complex. In general, metal sites offer additional structural flexibilities over their carbocyclic or acyclic organic analogues, which contributes greatly to their intriguing Bergman cyclization reactivities. This is true not only for thermal cyclization of metal-bound enediyne ligands in which the metal acts as a scaffold or Lewis acid, but also for photoelectronic or photothermal Bergman cyclization which can be achieved via metal-ligand charge transfer excited states. These reactivity developments parallel new protein targeting strategies for simple enediynes constructs, suggesting that a combined approach of controlled initiation and site specific targeting may allow enediynes to truly reach their full potential in biomedical applications.


Subject(s)
Alkynes , Antibiotics, Antineoplastic , Biocompatible Materials , Organometallic Compounds , Alkynes/chemical synthesis , Alkynes/chemistry , Antibiotics, Antineoplastic/chemical synthesis , Antibiotics, Antineoplastic/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Biomedical Engineering/methods , Cyclization , Drug Design , Free Radicals/chemical synthesis , Free Radicals/chemistry , Models, Molecular , Molecular Conformation , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Photochemistry
18.
Chem Commun (Camb) ; (10): 1156-7, 2003 May 21.
Article in English | MEDLINE | ID: mdl-12778712

ABSTRACT

Conformationally constrained ethylene-diamine metalloenediyne compounds exhibit alkyne termini separations that are constant and independent of metal center geometry. Ancillary chloride ligand electron donation into the Bergman cyclization reaction coordinate, however, dramatically influences the observed temperatures.


Subject(s)
Diamines/chemistry , Metals/chemistry , Cyclization , Electrochemistry , Ethylenes/chemistry , Models, Molecular , Molecular Conformation
19.
Inorg Chem ; 41(9): 2616-22, 2002 May 06.
Article in English | MEDLINE | ID: mdl-11978134

ABSTRACT

The concerned azoles are 2-(2-pyridyl)benzoxazole (pbo) and 2-(2-pyridyl)benzthiazole (pbt). These react with ReOCl(3)(PPh(3))(2) in benzene, affording Re(V)OCl(3)(pbo) and Re(V)OCl(3)(pbt), which undergo facile oxygen atom transfer to PPh(2)R (R = Ph, Me) in dichloromethane solution, furnishing Re(III)(OPPh(2)R)Cl(3)(pbo) and Re(III)(OPPh(2)R)Cl(3)(pbt). The oxo species react with aniline in toluene solution, yielding the imido complexes Re(V)(NPh)Cl(3)(pbo) and Re(V)(NPh)Cl(3)(pbt). The X-ray structures of pbt, ReOCl(3)(pbt), Re(OPPh(3))Cl(3)(pbt), and Re(NPh)Cl(3)(pbo) are reported. The lattice of pbt consists of stacked dimers. In all the complexes the azole ligand is N,N-chelated and the ReCl(3) moiety is meridionally disposed. In ReOCl(3)(pbt) the metal-oxo bond length is 1.607(9) A. The second-order rates and the associated activation parameters of the oxygen atom transfer reactions of the Re(V)O chelates with PPh(2)R are reported. The large and negative entropy of activation (approximately -24 eu) is consistent with an associative pathway involving nucleophilic phosphine attack. The rate increases with phosphine basicity (PPh(2)Me > PPh(3)) and azole heteroatom electronegativity (O(pbo) > S(pbt)). Logarithmic rate constants for ReOCl(3)(pbo), ReOCl(3)(pbt), and ReOCl(3)(pal) are found to correlate linearly with Re(VI)O/Re(V)O reduction potentials (pal is pyridine-2-(N-p-tolyl)aldimine). The relatively low rate constant of ReOCl(3)(pbt) compared to that of ReOCl(3)(pal) is consistent with the observed shortness of the metal-oxo bond in the former. Crystal data are as follows: (pbt) empirical formula C(12)H(8)N(2)S, crystal system orthorhombic, space group Pca2(1), a = 13.762(9) A, b = 12.952(8) A, c = 11.077(4) A, V = 1974(2) A(3), Z = 8; (ReOCl(3)(pbt)) empirical formula C(12)H(8)Cl(3)N(2)OSRe, crystal system monoclinic, space group P2(1)/c, a = 11.174(7) A, b = 16.403(10) A, c = 7.751(2) A, beta = 99.35(4) degrees, V = 1401.8(13) A(3), Z = 4; (Re(NPh)Cl(3)(pbo)) empirical formula C(18)H(13)Cl(3)N(3)ORe, crystal system monoclinic, space group P2(1)/c, a = 9.566(6) A, b = 16.082(8) A, c = 11.841(5) A, beta = 94.03(4) degrees, V = 1817(2) A(3), Z = 4.

SELECTION OF CITATIONS
SEARCH DETAIL
...