Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 120(41): 10744-10756, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27659807

ABSTRACT

Cystine-based gemini surfactants with dodecyl, tetradecyl, hexadecyl, and octadecyl hydrocarbon chains were synthesized, and their interactions with unsaturated (soy phosphatidylcholine, SPC)/saturated (hydrogenated SPC, HSPC) soy phosphatidylcholines in the forms of a monolayer and a model liposome were estimated for different combinations of the components in the mixed systems. Studies of Langmuir monolayers at the air-aqueous buffer interface revealed condensation of the monomolecular films with the addition of surfactants. The effect of surfactants decreased according to the following order: octadecyl > hexadecyl > tetradecyl > dodecyl homologs. The nonideal mixing between the components was estimated using the deviation of the experimental molecular area from the ideal area per molecule. The excess molecular area increased with the increase in the surfactant chain length and phospholipid saturation. The 50 mol % mixture of cystine derivatives and phospholipids formed thermodynamically stable monolayers. The surfactants increased the rigidity of SPC monolayers and decreased that of HSPC monolayers, as observed by the studies of surface dialational rheology. The film structure at the air-water interface could differentiate the SPC- and HSPC-comprising systems through the formation of organized regions, especially at a higher surface pressure. The constriction of surfactant/phospholipid hybrid vesicles was observed with an increase in the length of surfactant hydrocarbon chains. The negative zeta potential of vesicles took the highest values and did not change with time for 20 and 50 mol % surfactant. The spherical shape of the vesicles was confirmed by transmission electron microscopy. Differential scanning calorimetry revealed an increase in fluidity of HSPC bilayers and rigidity of SPS bilayers under the influence of surfactants. These effects were confirmed by fluorescence spectroscopy. All of the vesicle formulations were found to be nontoxic from the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide assay, suggesting their potential as a novel membranous system for the delivery of drugs, genetic materials, vaccines, and other therapeutic agents.

2.
J Oleo Sci ; 65(5): 399-411, 2016.
Article in English | MEDLINE | ID: mdl-27150333

ABSTRACT

The physicochemical properties of large unilamellar vesicles (LUVs) were assessed with respect to lipid composition, pH, time, and temperature by monitoring their size, zeta potential, drug payload, and thermal behavior. A conventional thin film hydration technique was employed to prepare liposomes from soy phosphatidylcholine (SPC), dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG), and a 7:3 (M/M) mixture of DPPC+DPPG along with 30 mole% cholesterol in each combination. While the size of liposomes depended on lipid composition, pH and temperature, the zeta potential was found to be independent of the pH of the medium, although it varied with liposome type. Spherical morphology and bilayer were observed by electron microscopy. The phase transition temperature increased with decreasing pH. Membrane micro-viscosity showed the highest value for SPC, and membrane rigidity increased with increasing pH. The entrapment efficiency of liposomes with reference to curcumin was as follows: DPPC>DPPC+DPPG>DPPG>SPC. Sustained release of curcumin was observed for all liposomes. Curcumin-loaded liposomes exhibited substantial antibacterial activity against the gram-positive bacteria Bacillus amyloliquefaciens. Additional studies are needed to improve the understanding of the effect of formulation variables on the physicochemical stability of liposomes.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacillus amyloliquefaciens/drug effects , Curcumin/pharmacology , Lipids/chemistry , Liposomes/chemistry , Temperature , Anti-Bacterial Agents/chemistry , Chemistry, Physical , Curcumin/chemistry , Drug Carriers/chemistry , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL